Мозг как синергетический компьютер

Автор: Пользователь скрыл имя, 15 Декабря 2011 в 16:32, контрольная работа

Описание работы

Человеческий мозг является самоорганизующейся системой. И хотя эта система — самая сложная из всех известных нам, она все же соответствует принципам синергетики. На законах синергетики основан и новый тип компьютера, обладающий основными свойствами человеческого восприятия.
В своей работе, я постараюсь подробно рассмотреть тему «Мозг как синергетический компьютер».Для этого я буду использовать различные источники информации: книги, журналы и интернет.

Содержание

Введение
1.Мозг как синергетический компьютер
1.1 Синергетика 4
1.2Работа мозга 6
2.Физика мышления 13
3.Биография Н.П.Бехтеревой 15
Заключение
Список литературы

Работа содержит 1 файл

kse.doc

— 87.50 Кб (Скачать)

Введение

1.Мозг как синергетический компьютер

    1.1 Синергетика                                                                               4

    1.2Работа мозга                                                                                6

2.Физика мышления                                                                              13

3.Биография   Н.П.Бехтеревой                                                              15

Заключение

Список литературы 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Введение

      В последней четверти XX века сформировалось новое направление в науке, получившее название синергетика. Основоположником синергетики считается профессор Штутгартского университета Г.Хакен, сделавший на первой конференции по сложным системам в 1973 году свой доклад, ставший программным и предложивший термин для обозначения нового направления - синергетика. Термин заимствован Хакеном из греческого языка и в переводе означает содействие, сотрудничество, согласованно действующий. Буржуазная наука заговорила о синергетике, как о высочайшем достижении науки конца ХХ века, которое включает в себя теорию самоорганизации и совокупность соответствующих математических методов. Как доказала современная наука, на уровне физической, химической, биологической, социальной форм организации материи объективный мир состоит из сложных систем. Значительная их часть - это открытые неравновесные системы. Были открыты и свойства таких систем самоструктурироваться, самоорганизовываться, саморазвиваться и самовоспроизводиться.

Человеческий мозг является самоорганизующейся системой. И хотя эта система — самая сложная из всех известных нам, она все же соответствует принципам синергетики. На законах синергетики основан и новый тип компьютера, обладающий основными свойствами человеческого восприятия.

В своей работе, я постараюсь подробно рассмотреть тему «Мозг как синергетический компьютер».Для этого я буду использовать различные источники информации: книги, журналы и интернет. 
 
 
 
 
 
 

1.Мозг  как синергетический  компьютер

1.1 Синергетика 

Синергетика переводится как "энергия совместного действия" (от греч. «син» — «со-», «совместно» и «эргос» — «действие»)— созданное профессором Штутгартского университета Германом Хакеном междисциплинарное направление, которое занимается изучением систем, состоящих из многих подсистем различной природы (электронов, атомов, молекул, клеток, нейронов, механических элементов, органов животных, людей, транспортных средств и т.д.), и выявлением того, каким образом взаимодействие таких подсистем приводит к возникновению пространственных, временных или пространственно-временных структур в макроскопическом масштабе.

Синергетика представляет собой новую обобщающую науку, изучающую  основные законы самоорганизации сложных  систем. В нее входят такие области  как нелинейная динамика, хаос, фракталы, катастрофы, бифуркации, волны, солитоны, полевые эффекты и т.д. Растущая в наше дни популярность синергетики объясняется тем, что она становится языком междисциплинарного общения, на котором могут друг друга понять математики, физики, химик, биологи, психологи и др., несмотря на то, что каждый понимает синергетические модели по-своему.

На вопрос: "Что  такое синергетика?" можно дать несколько ответов.

    Во-первых, буквальный. Речь идет о явлениях, которые возникают от совместного  действия нескольких разных факторов, в то время как каждый фактор в отдельности к этому явлению не приводит.

    Во-вторых, синергетику часто определяют  как науку о самоорганизации.  Последнее означает самопроизвольное  усложнение формы, или в более  общем случае структуры системы при медленном и плавном изменении ее параметров (ячейки Бенара).

Сейчас также  самопроизвольно возникающие образования  объединяются под общим названием  — диссипативные структуры (термин предложен И.Р. Пригожиным).

   Можно  дать третье определение: синергетика — наука о неожиданных явлениях. Это определение не противоречит, а скорее дополняет предыдущие. Действительно, все перечисленные явления на первый взгляд неожиданны. При низкой температуре подогрева ячеек Бенара не было, а при увеличении ее структура "вдруг" появилась. То же можно сказать об автоколебаниях: ритмический режим появляется "вдруг" при медленном плавном и монотонном изменении параметров. Можно сказать, что любое качественное изменение состояния системы (или режима ее работы) производит впечатление неожиданного. При более детальном анализе выясняется, конечно, что ничего "неожиданного" в этом нет. "Причиной" неожиданного, как правило, оказывается неустойчивость.

Анализ, вскрывающий  причину неожиданного явления, и  составляет предмет синергетики.

Метод (или математический аппарат), который используется в синергетике,— это теория динамических систем.

Одна из задач синергетики — выяснение законов построения организации, возникновения упорядоченности. Здесь акцент делается на принципах построения организации, ее возникновении, развитии и самоусложнении.

При решении  самых разных задач от физики и  химии до экономики и экологии создание и сохранение организации, формирование упорядоченности является либо целью деятельности, либо ее важным этапом. 
 
 
 
 
 

1.2.Работа мозга 

Мозг - центральный отдел нервной системы животных и человека. Состоит из нервной ткани: серого вещества (скопление главным образом нервных клеток) и белого вещества (скопление главным образом нервных волокон). У позвоночных различают головной мозг и спинной мозг. Головной мозг, с окружающими его оболочками находится в полости мозгового черепа. Верхняя вентральная поверхность головного мозга по форме соответствует внутренней вогнутой поверхности свода черепа. Нижняя поверхность - основание головного мозга, имеет сложный рельеф, соответствующий черепным ямкам внутреннего основания черепа.

Масса мозга  взрослого человека колеблется от 1100 до 2000 г. На протяжении от 20 до 60 лет  масса и объем остаются максимальным и постоянным для каждого индивидуума. При осмотре препарата головного мозга хорошо заметны три его наиболее крупные составные части. Это парные полушария большого мозга, мозжечок и мозговой ствол.

Мозг - это инструмент, похожий на компьютер по принципу работы, но не по характеру обрабатываемой информации. Он обрабатывает, хранит и в нужное время воспроизводит нервные сигналы для того, чтобы мы могли "вспомнить" какие-то усилия мышц, движения глаз и сигналы на сетчатке, соответствующие образам из внешнего мира. Мозг обеспечивает нашу возможность пошевелить правильно голосовыми связками, языком, мышцами глаз и рук. Но при этом мозг не хранит и не обрабатывает образов из внешнего мира.

       Мы  в большой степени используем  сам внешний мир для размышлений  и для получения верных выводов об устройстве мира. Без использования органов чувств, и без активного действия в этом мире мы не смогли бы рассуждать вообще. Не было бы предмета, то есть образа, для рассуждения.

       Чтобы отличить мозг, как биологическое  устройство, от сознания, как способности воспринимать и сопоставлять образы внешнего мира, лучше не приписывать мозгу функций сознания. Мозг не имеет мышления, не хранит изображения лиц наших знакомых, не делает логических выводов о том, о чём мы рассуждаем.

      Идеи  синергетики позволяют по-новому оценить взаимодействие элементов и системы в деятельности работы мозга. Хорошо известно, что элементы, функционируя в составе системы, обладают иными свойствами, чем вне ее. Эти свойства определяются, разумеется, природой элементов, но проявляются лишь при определенных условиях, при включении в систему. Система не «навязывает» элементам чуждые им свойства, а лишь создает условия реализации не проявляющихся в иных условиях свойств. Это общее положение приобретает новое звучание в свете представлений о кооперации элементов в ходе самоорганизации. Кооперация различных элементов, подчас весьма разнородных, возможна на основе какого-то общего их свойства, способствующего их объединению в целостную систему (динамическую структуру). Явления самоорганизации в деятельности мозга основаны, очевидно, на том, что мозг как целое - актуализирует в элементах (клеточные элементы, их микросистемы-модули, функциональные блоки, полушария мозга) наряду с прочими и такие свойства, которые облегчают кооперацию в целостные системы. Таким путем раскрывается важнейший аспект взаимодействия элементов и системы - выявление и актуализация системой свойств элементов, содействующих кооперации. По-видимому, именно в этом состоит сущность одного из важнейших механизмов интегративной деятельности мозга. Наглядной иллюстрацией приобретения элементами таких способствующих кооперации свойств является уравнивание функциональной подвижности - лабильности - нервных элементов, обеспечивающее синхронизацию их активности и формирование рабочих ансамблей.

      В свете концепций синергетики  различного рода кооперативные эффекты  составляют главный принцип и  механизм интегративной деятельности мозга. Взаимодействие разных по структурно-функциональной организации, иерархическому уровню и  другим параметрам мозговых образований приводит к формированию целостной мозговой системы, реализующей ту или иную форму интеративной деятельности. Конкретные механизмы такого взаимодействия интенсивно исследуются современной нейробиологией, а использование синергетических подходов может способствовать их осмыслению под определенным углом зрения. Существенную особенность мозговых кооперативных эффектов составляет взаимодействие более или менее однородных и разнородных мозговых элементов. Полифункциональность мозговых структур обеспечивает их участие в определенных разных процессах организации и самоорганизации. Одна и та же структура в силу своей полифункциональности участвует в формировании мозговых функциональных органов лишь отдельными своими функциональными «гранями». Понятно, что в качестве элементов формирующихся систем выступает не та или иная мозговая структура целиком, а эти «функциональные грани». Процессы организации - самоорганизации развертываются на всех уровнях структурно-функциональной организации мозга, что выдвигает вопрос о механизмах и закономерностях межуровневых взаимодействий в ходе самоорганизации. Процессы самоорганизации развертываются по горизонтали - в пределах одного уровня, и по вертикали - в виде взаимодействия. элементов разных уровней. Горизонтальная и вертикальная составляющие теснейшим уровнем связаны друг с другом так, что кооперативные эффекты на каждом из уровней ориентированы на взаимодействие с элементом одного уровня и с элементами разных уровней. При этом свойства, облегчающие кооперативные эффекты с элементами того же уровня, могут в то же время способствовать облегчению кооперации с элементами других уровней, и наоборот. Тот факт, что процессы организации - самоорганизации развертываются на разных структурных уровнях мозговой организации изначально придает этим процессам системный характер. Возникающие в далеких от термодинамического равновесия условиях диссипативные структуры при всей широте диапазона несут на себе неизгладимую печать внешних условий своего возникновения (особенности проносящихся через систему потоков энергии вещества и информации) и внутренних детерминант (особенности элементов, их функциональное состояние и т.д.). Структура этих диссипативных систем представляет собой по существу овеществление условий своего возникновения и существование - до следующей бифуркации. Это дает возможность подчеркнуть два важных обстоятельства. При самом общем подходе мозг своей структурой, как и любая живая система, олицетворяет условия своего возникновения. Общие принципы структурной организации мозга, следовательно, не случайны, а глубоко закономерны, в них воплощены те условия, которые диктовали именно такие, а не иные пути самоорганизации. В то же время, поскольку деятельность мозга, как и любых живых систем, реализуется на основе организации - самоорганизации, его (мозга) структурная организация должна быть такой, чтобы обеспечивать возможность формирования на основе этих процессов микро- и макро-ансамблей (функциональных систем), реализующих определенную деятельность мозга. С этой точки зрения принципиальной стороной мозговой организации является наличие в ней жестких и гибких звеньев (по Н.П.Бехтеревой). Жесткие звенья олицетворяют собой те этапы организации-самоорганизации, которые изначально и с необходимостью включались в эти процессы при любых (естественно, заданных средой) условиях. Иными словами, жесткие звенья - это овеществленные этапы самоорганизации, общие для множества ситуаций «организм - среда». Гибкие же звенья обеспечивают формирование тех «достроек», благодаря которым возникают высокоэффективные рабочие ансамбли, ориентированные на решение определенных задач, составляя их мозговое обеспечение. Совершенство мозга в том и состоит, что он обеспечивает оптимальные условия для развертывания процессов организации-самоорганизации. Жесткие звенья - определенные мозговые структуры - выступают как овеществленные, многократно протекавшие общие и начальные этапы любой самоорганизации, это -«застывшие» этапы функции. Вместо того, чтобы каждый раз заново воссоздавать все эти этапы, заново проходить всю шкалу этапов самоорганизации, мозг просто «включает» нужные структуры, активность которых составляет предпосылку функционирования гибких звеньев. Сочетанная, интегрированная активность жестких и гибких звеньев формирует функциональные органы, адекватные текущей ситуации, которая неизбежно включает и накопленные и овеществленные следы прошлых ситуаций.

      В процессе организации-самоорганизации интегративной деятельности мозга фундаментальную роль играют события, развертывающиеся на субклеточном-молекулярном уровне его структурно-функциональной организации. Одной из главных особенностей функционирования этого уровня структурной организации является тесное взаимодействие всех нейрохимических механизмов мозга. На основе такого взаимодействия реализуются те или иные аспекты интегративной деятельности мозга. Общий принцип взаимодействия нейрохимических систем мозга предполагает выявление и функциональную оценку конкретных путей взаимодействия, раскрытия функционального смысла этого взаимодействия, тем более, что не все пути таких взаимодействий равноценны для разных форм деятельности. Одна из важнейших характеристик нейрона - состояние его рецепторного аппарата, определяющего чувствительность к различным химическим сигналам. В целостном функционирующем мозге осуществляется тончайшая регуляция чувствительности нервных клеток к химическим сигналам, и это, возможно, одна из наиболее эффективных линий регуляции способности нейронов к кооперативным эффектам. Структурно-функциональная организация нейрохимического аппарата мозга такова, что она обеспечивает возможность формирования нейронных ансамблей, обеспечивающих различные интегративные эффекты: восприятие, формирование мотивационных возбуждений, реализацию подкрепления, формирование временной связи и т.д.

      Одной из интенсивно исследуемых в последние  годы форм взаимодействия мозговых образований  является межполушарное взаимодействие. К настоящему времени твердо установлена функциональная специализация мозговых полушарий у человека и животных. Полноценная, эффективная работа целого мозга основана на тесном взаимодействии полушарий мозга, каждое из которых вносит свой вклад в решение общемозговых задач. Роль взаимного влияния полушарий четко обнаруживается при рассечении межполушарных связей («расщепленный мозг»). Целенаправленное изучение специфики функционирования и взаимодействия полушарий мозга при осуществлении им интегративной деятельности связано с именем выдающегося нейрофизиолога Р.Сперри. Впоследствии в разработку этой масштабной и принципиальной проблемы включилось множество исследователей и в настоящее время это направление представлено множеством работ, позволивших внести много нового в понимание механизмов межполушарного синтеза. Показано, что межполушарное взаимодействие реализуется не только на уровне целых полушарий, но и на уровне отдельных микросистем нейронов, образующихся в разных полушариях и структурно связанных друг с другом. Это создает предпосылки не тотального, а избирательного взаимодействия между полушариями. Эти взаимодействия, по-видимому, включают и такие изменения свойств контрлатерального полушария, которые облегчают кооперацию полушарий и превращение их в единую высокоэффективную систему.

Информация о работе Мозг как синергетический компьютер