Вселенная и основные представления об ее развитии

Автор: Пользователь скрыл имя, 19 Декабря 2011 в 23:27, реферат

Описание работы

Процесс эволюции Вселенной происходит очень медленно. Ведь Вселенная во много раз старше астрономии и вообще человеческой культуры. Зарождение и эволюция жизни на земле является лишь ничтожным звеном в эволюции Вселенной. И всё же исследования, проведенные в нашем веке, приоткрыли занавес, закрывающий от нас далекое прошлое.

Содержание

Введение
Глава 1. Образование вселенной и основные представления об ее развитии.
1.1.Первые модели мира
1.2.Основные космологические гипотезы
1.3.Современная картина происхождения Вселенной. Рождение Вселенной
1.4.Ранний этап эволюции Вселенной
1.5.Структурная самоорганизация Вселенной
Глава 2.Галактики и космонавтика.
2.1Эволюция и строение галактик
2.2.Астрономия и космонавтика
2.3. Проблема существования и поиска внеземных цивилизаций
Заключение
Список использованной литературы

Работа содержит 1 файл

Реферат по ксе.doc

— 182.00 Кб (Скачать)

            Образование разномасштабных  структур во Вселенной открыло возможность для новых усложнений вещества. Важнейшим узловым моментом стало образование всей совокупности элементов таблицы Менделеева. Они появились в звездах в ходе процессов звездного нуклеосинтеза.

            Согласно современным  представлениям, присутствующие в межзвездной  среде тяжелые элементы изготовлены  в звездах типа красных гигантов. Желтые карлики типа нашего Солнца поддерживают свое состояние главным образом в результате термоядерной реакции, превращающей водород в гелий. Красные гиганты обладают массой, в несколько раз превышающей солнечную, водород в них выгорает очень быстро. В центре, где сосредоточен гелий, их температура достигает нескольких сотен миллионов градусов, что оказывается достаточным для протекания реакций углеродного цикла - слияния ядер гелия в углерод. Ядро углерода, в свою очередь, может присоединить еще одно ядро гелия и образовать ядро кислорода, неона и т.д. вплоть до кремния. Выгорающее ядро звезды сжимается, и температура в нем поднимается до 3 - 10 млрд. градусов. В таких условиях реакции объединения продолжаются вплоть до образования ядер железа.

            Ядро железа - самое устойчивое во всей последовательности химических элементов. Здесь проходит граница, выше которой нуклеосинтез перестает быть источником выделяющейся энергии (как это было в предыдущих реакциях) и протекание реакций с образованием еще более тяжелых ядер требует энергетических затрат.

            Разработана теория образования в недрах красных  гигантов элементов от железа до висмута - в процессах медленного захвата нейтронов. Образование же наиболее тяжелых ядер, замыкающих таблицу Менделеева, предположительно происходило в оболочках взрывающихся звезд или при прохождении сильной ударной волны, созданной взрывом сверхновой звезды, через гелиевую оболочку этой звезды с массой около 25 солнечных масс.

            Красные гиганты  быстро расходуют запас гелия, у  них короткий жизненный цикл порядка десятка миллионов лет. За время своего активного существования красный гигант отдает в межзвездную среду ежегодно не менее 10-4 –10-5 масс Солнца, а в конце существования он с взрывом сбрасывает внешнюю оболочку вместе с накопившимися в ней “шлаками” - химическими элементами, результатами деятельности циклов нуклеосинтеза. Поэтому межзвездная среда сравнительно быстро обретает все известные на сегодняшний день химические элементы тяжелее гелия. Звезды следующих поколений, в том числе и Солнце, с самого начала содержат в своем составе и в составе окружающего их газопылевого облака примесь тяжелых элементов.

            Появление во Вселенной  всей гаммы химических элементов  открыло новый этап в развитии вещества и в формировании его  структур. Так, в местах нахождения разнообразных химических элементов протекают процессы их объединения в молекулы, сложность которых может нарастать до очень высоких уровней. Причину, заставляющую атомы объединяться в молекулы, наука знает достаточно хорошо. В основе этих процессов - химические силы, за которыми скрывается одна из фундаментальных сил природы - электромагнитное взаимодействие. Процессы соединения атомов в молекулы широко распространены во Вселенной. В межзвездной среде, где концентрация вещества ничтожно мала, тем не менее, обнаруживаются молекулы водорода. Там же встречаются мельчайшие пылинки, в их основе - кристаллики льда или углерода с примесью гидратов разных соединений. Молекулярный водород вместе с гелием образует газовые межзвездные облака. Скопление газов вместе с пылинками формирует газопылевые облака. Но самое интересное, с чем столкнулись наблюдатели, - это неожиданно большое присутствие в космосе разнообразных органических молекул, вплоть до таких сложных, как молекулы некоторых аминокислот. В межзвездных облаках насчитали более 50 видов органических молекул. Еще удивительнее, что органические молекулы находят во внешних оболочках некоторых не очень горячих звезд и в образованиях, температура которых незначительно отличается от абсолютного нуля. Так что синтез молекул, в том числе и органических, - распространенное и вполне обыденное явление в космосе. Правда, наука пока не может с уверенностью назвать конкретные пути протекания такого синтеза.

            В связи с этим невольно возникает вопрос, способно ли усложнение вещества достигнуть самых высоких уровней вне планет, в межзвездной среде или в оболочках не очень горячих звезд? Иначе говоря, возможна ли там жизнь?

            Эта тема неоднократно обыгрывалась в научно-фантастических произведениях, но современная наука не позволяет дать ни положительного, ни отрицательного ответа на этот вопрос. Пока мы знаем только один вариант жизни в Космосе - на Земле.

            Наличие тяжелых  химических элементов, а также молекул  и их соединений обеспечивает также возможность образования около некоторых звезд второго поколения планетных систем типа Солнечной. В таких системах становится возможным протекание геологической и химической эволюции.

 

      Глава 2.Галактики  и космонавтика.

      2.1Эволюция и строение галактик

 

            Поэт спрашивал: «Послушайте! Ведь, если звезды зажигают — значит — это кому-нибудь нужно?». Мы знаем, что звезды нужны, чтобы светить, и наше Солнце дает необходимую для нашего существования энергию. А зачем нужны галактики? Оказывается и галактики нужны, и Солнце не только обеспечивает нас энергией. Астрономические наблюдения показывают, что из ядер галактик происходит непрерывное истечение водорода. Таким образом, ядра галактик являются фабриками по производству основного строительного материала Вселенной — водорода.

            Водород, атом которого состоит из одного протона в ядре и одного электрона на его орбите, является самым простым «кирпичиком», из которого в недрах звезд образуются в процессе атомных реакций более сложные атомы. Причем оказывается, что звезды совершенно не случайно имеют различную величину. Чем больше масса звезды, тем более сложные атомы синтезируются в ее недрах.

            Наше Солнце как  обычная звезда производит только гелий  из водорода (который дают ядра галактик), очень массивные звезды производят углерод — главный «кирпичик» живого вещества. Вот для чего нужны галактики и звезды. А для чего нужна Земля? Она производит все необходимые вещества для существования жизни человека. А для чего существует человек? На этот вопрос не может ответить наука, но она может заставить нас еще раз задуматься над ним.

            Если «зажигание»  звезд кому-то нужно, то может и  человек кому-то нужен? Научные данные помогают нам сформулировать представление  о нашем предназначении, о смысле нашей жизни. Обращаться при ответе на эти вопросы к эволюции Вселенной — это значит мыслить космически. Естествознание учит мыслить космически, в то же время не отрываясь от реальности нашего бытия.

            Вопрос об образовании  и строении галактик — следующий  важный вопрос происхождения Вселенной. Его изучает не только космология как наука о Вселенной — едином целом, но также и космогония (греч. «гонейа» означает рождение) — область науки, в которой изучается происхождение и развитие космических тел и их систем (различают планетную, звездную, галактическую космогонию).

            Галактика представляет собой гигантские скопления звезд  и их систем, имеющие свой центр (ядро) и различную, не только сферическую, но часто спиралевидную, эллиптическую, сплюснутую или вообще неправильную форму. Галактик — миллиарды, и в каждой из них насчитываются миллиарды звезд.

            Наша галактика  называется Млечный Путь и состоит  из 150 млрд. звезд. Она состоит из ядра и нескольких спиральных ветвей. Ее размеры —100 тыс. световых лет. Большая  часть звезд нашей галактики сосредоточена в гигантском «диске» толщиной около 1500 световых лет. На расстоянии около 30 тыс. световых лет от центра галактики расположено Солнце.

            Ближайшая к нашей  галактика (до которой световой луч  бежит 2 млн. лет) — «туманность Андромеды». Она названа так потому, что именно в созвездии Андромеды в 1917 году был открыт первый внегалактический объект. Его принадлежность к другой галактике была доказана в 1923 году Э. Хабблом, нашедшим путем спектрального анализа в этом объекте звезды. Позже были обнаружены звезды и в других туманностях.

          А в 1963 году были открыты квазары (квазизвездные  радиоисточники) — самые мощные источники радиоизлучения во Вселенной со светимостью в сотни раз большей светимости галактик и размерами в десятки раз меньшими их. Было предположено, что квазары представляют собой ядра новых галактик и стало быть процесс образования галактик продолжается и поныне.

      2.2.Астрономия и космонавтика

 

            Звезды изучает  астрономия (от греч. «астрон» — звезда и «номос» — закон) — наука  о строении и развитии космических тел и их систем. Эта классическая наука переживает в XX веке свою вторую молодость в связи с бурным развитием техники наблюдений — основного своего метода исследований: телескопов-рефлекторов, приемников излучения (антенн) и т. п. В СССР в 1974 году вступил в действие в Ставропольском крае рефлектор с диаметром зеркала 6 м., собирающий света в миллионы раз больше, чем человеческий глаз.

            В астрономии исследуются  радиоволны, свет, инфракрасное, ультрафиолетовое, рентгеновское излучения и гамма-лучи. Астрономия делится на небесную механику, радиоастрономию, астрофизику и другие дисциплины.

            Особое значение приобретает в настоящее время  астрофизика — часть астрономии, изучающая физические и химические явления, происходящие в небесных телах, их системах и в космическом пространстве. В отличие от физики, в основе которой лежит эксперимент, астрофизика основывается главным образом на наблюдениях. Но во многих случаях условия, в которых находится вещество в небесных телах и системах отличается от доступных современным лабораториям (сверхвысокие и сверхнизкие плотности, высокая температура и т. д.). Благодаря этому астрофизические исследования приводят к открытию новых физических закономерностей.

            Собственное значение астрофизики определяется тем, что в настоящее время основное внимание в релятивистской космологии переносится на физику Вселенной — состояние вещества и физические процессы, идущие на разных стадиях расширения Вселенной, включая наиболее ранние стадии.

            Один из основных методов астрофизики — спектральный анализ. Если пропустить луч белого солнечного света через узкую щель, а затем сквозь стеклянную трехгранную призму, то он распадается на составляющие цвета, и на экране появится радужная цветовая полоска с постепенным переходом от красного к фиолетовому — непрерывный спектр. Красный конец спектра образован лучами, наименее отклоняющимися при прохождении через призму, фиолетовый — наиболее отклоняемыми. Каждому химическому элементу соответствуют вполне определенные спектральные линии, что и позволяет использовать данный метод для изучения веществ.

            К сожалению, коротковолновые  излучения — ультрафиолетовые, рентгеновские и гамма-лучи — не проходят сквозь атмосферу Земли, и здесь на помощь астрономам приходит наука, которая до недавнего времени рассматривалась как прежде всего техническая — космонавтика (от греч. «наутике» — искусство кораблевождения), обеспечивающая освоение космоса для нужд человечества с использованием летательных аппаратов.

            Космонавтика изучает  проблемы: теории космических полетов — расчеты траекторий и т. д.; научно-технические — конструирование космических ракет, двигателей, бортовых систем управления, пусковых сооружений, автоматических станций и пилотируемых кораблей, научных приборов, наземных систем управления полетами, служб траекторных измерений, телеметрии, организация и снабжение орбитальных станций и др.; медико-биологические — создание бортовых систем жизнеобеспечения, компенсация неблагоприятных явлений в человеческом организме, связанных с перегрузкой, невесомостью, радиацией и др.

            История космонавтики начинается с теоретических расчетов выхода человека в неземное пространство, которые дал К. Э. Циолковский в труде «Исследование мировых пространств реактивными приборами» (1903 г.). Работы в области ракетной техники начаты в СССР в 1921 году. Первые запуски ракет на жидком топливе осуществлены в США в 1926 году.

            Основными вехами в  истории космонавтики стали запуск первого искусственного спутника Земли 4 октября 1957 года, первый полет человека в космос 12 апреля 1961 года, лунная экспедиция в 1969 году, создание орбитальных пилотируемых станций на околоземной орбите, запуск космического корабля многоразового использования.

Информация о работе Вселенная и основные представления об ее развитии