Антропный космологический принцип и проблема поиска жизни во Вселенной

Автор: Пользователь скрыл имя, 11 Января 2011 в 19:54, реферат

Описание работы

Идеи антропного космологического принципа, развивавшиеся в последнем столетии XX века, представляют большой научный интерес с точки зрения ответа на вопросы происхождения и эволюции окружающего мира. Основная идея этого принципа состоит в том, что фундаментальные свойства Вселенной, значения основных физических констант и даже форма физических закономерностей тесно связаны с фактом структурности Вселенной во всех масштабах - от элементарных частиц до сверхскоплений галактик - с возможностью существования условий, при которых возникают сложные формы движения материи, жизнь и человек.

Содержание

Введение 3
1. Космология 4
2. Истоки антропного принципа 8
3. Антропоцентрический и антропный принцип 10
4. Условия существования жизни 11
5. Космологический антропный принцип 15
6. Возможности антропного принципа 18
7. В чем ценность антропного принципа 22
Заключение 24
Литература 25

Работа содержит 1 файл

Реферат.doc

— 170.50 Кб (Скачать)

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

КАФЕДРА ФИЛОСОФИИ И МЕТОДОЛОГИИ НАУКИ 
 
 
 
 
 
 
 
 
 

РЕФЕРАТ ПО ФИЛОСОФИИ

На тему: Антропный космологический принцип и проблема поиска жизни во Вселенной 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

              Аспиранта кафедры физики

              полупроводников и наноэлектроники

              Шпаковского Сергея Васильевича 
               
               
               
               
               
               
               
               
               
               
               

Минск 2005 г

Содержание

 

Введение

   Идеи  антропного космологического принципа, развивавшиеся в последнем столетии XX века, представляют большой научный интерес с точки зрения ответа на вопросы происхождения и эволюции окружающего мира. Основная идея этого принципа состоит в том, что фундаментальные свойства Вселенной, значения основных физических констант и даже форма физических закономерностей тесно связаны с фактом структурности Вселенной во всех масштабах - от элементарных частиц до сверхскоплений галактик - с возможностью существования условий, при которых возникают сложные формы движения материи, жизнь и человек.

   Проблема  возникновения структурности мира и жизни во Вселенной традиционно трактуется следующим образом: окружающая нас Вселенная обладает определенными физическими свойствами и закономерностями, познаваемыми нами. Как в таком случае происходит эволюция Вселенной, приводящая к достаточно сложным структурам, как зарождается и эволюционирует в такой Вселенной жизнь? От ответа на эти во многом еще не решенные вопросы зависит возможность существования жизни в других областях Вселенной, в другие времена и направления ее поиска.

   Любая физическая теория, например уравнения  Максвелла в электродинамике, ставит перед собой задачу дать полное физическое описание той или иной системы, если известен полный набор начальных  данных. Но когда мы обращаемся к космологии, вопрос о начальных данных и фундаментальных постоянных неразрывно связан с тем, почему Вселенная именно такая, какой мы ее наблюдаем. Прежде чем подойти к ответу на этот вопрос, рассмотрим, какими представляются современному естествознанию начальные условия нашей Вселенной.

 

1. Космология

   Космология, учение о Вселенной как едином целом и о всей охваченной астрономическими наблюдениями области Вселенной как части целого, раздел астрономии. Выводы космологии (модели Вселенной) основываются на законах физики и данных наблюдательной астрономии, а также на философских принципах (в конечном счете - на всей системе знаний) своей эпохи. Важнейшим философским постулатом космологии является положение, согласно которому законы природы, установленные на основе изучения весьма ограниченной части Вселенной, чаще всего на основе опытов на планете Земля, могут быть экстраполированы на значительно большие области, в конечном счёте - на всю Вселенную. Без этого постулата космология как наука невозможна.

   Космологические теории разных эпох (а часто и относящиеся к одной и той же эпохе) существенно различаются в зависимости от того, какие физические принципы и законы принимаются в качестве достаточно универсальных и кладутся в основу космологии. Степень универсальности принципов и законов не может быть проверена непосредственным путём, но построенные на их основе модели должны допускать проверку для наблюдаемой области Вселенной ("астрономической Вселенной") выводы из глобальной модели должны подтверждаться наблюдениями (во всяком случае не противоречить им), а также предсказывать новые явления, которые ранее не наблюдались. Из необозримого множества моделей, которые можно построить, лишь очень немногие могут удовлетворить этому критерию. В 70-х гг. 20 в. этому требованию наилучшим образом удовлетворяют разработанные на основе общей теории относительности (в релятивистской космологии) однородные изотропные модели нестационарной горячей Вселенной.

   В наивной форме космологические  представления зародились в глубочайшей  древности в результате попыток человека осознать своё место в мироздании. Эти представления являются характерной составной частью различных мифов и верований. Более строгим логическим требованиям удовлетворяли космологические представления античных философов школ Демокрита, Пифагора, Аристотеля (5-4 вв. до н. э.). Влияние Аристотеля на космологию сохранялось на протяжении почти двух тысячелетий. Первая математическая модель Вселенной, основанная на всей совокупности данных астрономических наблюдений, представлена в "Альмагесте" Птолемея (2 в. н. э.). Эта геоцентрическая система мира объясняла все известные в ту эпоху астрономические явления и господствовала около полутора тыс. лет. За это время не было сделано практически никаких астрономических открытий, но стиль мышления существенно изменился. Предложенная Н. Коперником (16 в.) гелиоцентрическая система мира, несмотря на противодействие христианского догматизма, получала всё более широкое признание, особенно после того как Г. Галилей, применив для астрономических наблюдений телескоп, впервые (1-я половина 17 в.) обнаружил факты, которые трудно было совместить с геоцентрической системой. Ещё до этого Дж. Бруно, в соответствии с учением Коперника, сделал философский вывод о бесконечности Вселенной и отсутствии в ней какого-либо центра. Этот вывод оказал большое влияние на все последующее развитие космологии. Основанная на учении Коперника революция в космологии явилась исходным пунктом революции в астрономии и естествознании в целом. Закон всемирного тяготения (И. Ньютон, 1685), в самом названии которого подчёркнута его космологическая универсальность, дал возможность рассматривать Вселенную как систему масс, взаимодействия и движения которых управляются этим единым законом. Однако при применении ньютоновой физики к бесконечной системе масс обнаружились т. н. космологические парадоксы.

   Возникновение современной космологии связано  с созданием релятивистской теория тяготения (А. Эйнштейн, 1916) и зарождением внегалактической астрономии (20-е гг.). На первом этапе развития релятивистской космологии главное внимание уделялось геометрии Вселенной (кривизна пространства-времени и возможная замкнутость пространства). Начало второго этапа можно было бы датировать работами А.А. Фридмана (1922-24), в которых было показано, что искривленное пространство не может быть стационарным, что оно должно расширяться или сжиматься, но эти принципиально новые результаты получили признание лишь после открытия закона красного смещения (Э. Хаббл, 1929). На первый план теперь выступили проблемы механики Вселенной и еe "возраста" (длительности расширения). Третий этап начинается моделями "горячей" Вселенной (Г. Гамов, 2-я половина 40-х гг.). Основное внимание теперь переносится на физику Вселенной - состояние вещества и физические процессы, идущие на разных стадиях расширения Вселенной, включая наиболее ранние стадии, когда состояние было очень необычным. Наряду с законом тяготения в космологии приобретают большее значение законы термодинамики, данные ядерной физики и физики элементарных частиц. Возникает релятивистская астрофизика, которая заполняет существовавшую брешь между космологией и астрофизикой.

   Геометрия и механика Вселенной. В основе теории однородной изотропной Вселенной лежат  два постулата:

   1. наилучшим известным описанием  гравитационного поля являются  уравнения Эйнштейна, из этого следует кривизна пространства-времени и связь кривизны с плотностью массы (энергии);

   2. во Вселенной нет каких-либо  выделенных точек (однородность) и выделенных направлений (изотропия), т. е. все точки и все направления равноправны. Последнее утверждение часто называют космологическим постулатом, его можно назвать также обобщённым принципом Дж. Бруно. Ели дополнительно предположить, что космологическая постоянная равна нулю, а плотность массы создаются главным образом веществом (фотонами и нейтрино можно пренебречь), то космологические уравнения приобретают особенно простой вид и возможными оказываются только две модели. В одной из них кривизна пространства отрицательна или, в пределе, равна нулю, пространство бесконечно (открытая модель), в такой модели все расстояния со временем неограниченно возрастают. В другой модели кривизна пространства положительна, пространство конечно (но столь же безгранично, как и в открытой модели), в такой (замкнутой) модели расширение со временем сменяется сжатием. В ходе эволюции кривизна уменьшается при расширении, увеличивается при сжатии, но знак кривизны не меняется, т. е. открытая модель остаётся открытой, замкнутая - замкнутой. Начальные стадии эволюции обеих моделей совершенно одинаковы, должно было существовать особое начальное состояние с бесконечной плотностью массы и бесконечной кривизной пространства и взрывное, замедляющееся со временем расширение.

   Указанные выше постулаты достаточны для суждений об общем характере эволюции и  приводят, в частности, к выводу о чрезвычайно высокой начальной (при малых значениях t) плотности. Однако плотность не даёт исчерпывающей характеристики физического состояния, нужно знать ещё, например, температуру. Задание тем или иным путём характеристик начального состояния представляет третий постулат (гипотезу) релятивистской космологии, независимый от первых двух. Начиная с б0-70-х гг. обычно принимается постулат "горячей" Вселенной (предполагается высокая начальная температура). Приняв этот постулат, можно сделать несколько очень важных выводов. Во-первых, при очень малых значениях t не могли существовать не только молекулы или атомы, но даже и атомные ядра, существовала лишь некоторая смесь разных элементарных частиц (включая фотоны и нейтрино). На основе физики элементарных частиц можно рассчитать состав такой смеси на разных этапах эволюции. Во-вторых, зная закон расширения, можно указать, когда существовали те или иные условия: плотность вещества изменяется обратно пропорционально радиусу в третей степени или квадрату температуры, плотность излучения ещё быстрее обратно пропорционально радиусу в четвертой степени и т. д. Поскольку расширение вначале к тому же идёт с большой скоростью, очевидно, что высокие плотность и температура могли существовать только очень короткое время. Во Вселенной в это время существуют фотоны, электроны, позитроны, нейтрино и антинейтрино, нуклонов ещё очень мало. В результате последующих превращений получается смесь лёгких ядер (по-видимому, две трети водорода и одна треть гелия), все остальные химические элементы формируются из них, причём намного позднее, в результате ядерных реакций в недрах звёзд. Оставшиеся фотоны и нейтрино на очень ранней стадии расширения перестают взаимодействовать с веществом и должны наблюдаться в настоящее время в виде реликтового излучения, свойства которого можно предсказать на основе теории "горячей" Вселенной. В-третьих, хотя расширение вначале идёт очень быстро, процессы превращений элементарных частиц протекают несравненно быстрее, в результате чего устанавливается последовательность состояний термодинамического равновесия. Это чрезвычайно важное обстоятельство, поскольку такое состояние полностью описывается макроскопическими параметрами (определяемыми скоростью расширения) и совершенно не зависит от предшествующей истории. Поэтому незнание того, что происходило при плотностях, намного превосходящих ядерную (т. е. за первые 10-4 сек расширения), не мешает делать более или менее достоверные суждения о более поздних состояниях, когда состояние вещества является "обычным", известным современной микрофизике.

   Выводы  релятивистской космологии имеют радикальный, революционный характер, и вопрос о степени их достоверности представляет большой общенаучный и мировоззренческий интерес. Наибольшее принципиальное значение имеют выводы о нестационарности Вселенной, о высокой удельной энтропии ("горячая" Вселенная) и об искривленности пространства. Несколько более частный характер имеют проблемы знака кривизны, а также степени однородности и изотропии Вселенной. Вывод о нестационарности надёжно подтвержден: космологическое красное смещение, свидетельствует о том, что область Вселенной с линейными размерами порядка несколько млрд. пс расширяется, и это расширение длится по меньшей мере несколько млрд. лет (объекты, находящиеся на расстоянии 1 млрд. пс, мы видим такими, какими они были около 3 млрд. лет тому назад). Столь же основательное подтверждение нашла и концепция "горячей" Вселенной. В 1965 было открыто реликтовое радиоизлучение, причём его свойства оказались весьма близкими к предсказанным. Последующее детальное изучение позволило установить, что реликтовое излучение к тому же в высокой мере, с точностью до долей процента изотропно. Это доказывает, что Вселенная на протяжении более чем 0,99 своей истории изотропна. Это, естественно, повышает доверие к однородным изотропным моделям, которые до этого рассматривались как весьма грубое приближение к действительности.

   Наличие же кривизны пространства пока нельзя считать доказанным, хотя оно весьма вероятно, если учитывать подтверждение других выводов релятивистской космологии. Кривизна непосредственно никак не может быть измерена. Косвенно она могла бы быть определена, если бы была известна средняя плотность массы или можно было бы определить более точно зависимость красного смещения от расстояния (отклонение от линейной зависимости). Астрономические наблюдения приводят к значениям усреднённой плотности светящегося вещества около 10-31 г/смЗ. Определить плотность тёмного вещества, а тем более плотность энергии нейтрино гораздо труднее, и неопределённость суммарной плотности из-за этого весьма велика (она может быть, в частности, на два порядка больше усреднённой плотности звёздного вещества). Таким образом, на основе имеющихся наблюдательных данных нельзя сделать никакого выбора между открытой (расширяющейся безгранично) и замкнутой (расширение в далёком будущем сменяется сжатием) моделью. Эта неопределённость никак не сказывается на общем характере прошлого и современного расширения, но влияет на возраст Вселенной (длительность расширения) - величину и без того достаточно неопределённую.

Информация о работе Антропный космологический принцип и проблема поиска жизни во Вселенной