Теоретические основы экстракционных процессов очистки масел

Автор: Пользователь скрыл имя, 03 Октября 2013 в 22:16, доклад

Описание работы

Несмотря на то, что явление растворимости одних веществ в других известно давно (более ста лет) и нашло широкое практическое применение в различных процессах химической технологии, количественной теории для расчета экстракционных процессов до сих пор нет. А в работах Дж.Гильдебранда, В.К.Семенченко, И.И.Шахпаронова, П.А.Золотарева и других разработаны качественные основы теории растворимости и предложены полуэмлирические критерии для подбора оптимального растворителя. Физико-химическую сущность, механизм и количественные закономерности экстракционных процессов в настоящее время большинство отечественных и зарубежных исследователей трактуют с позиций молекулярной теории растворов.

Работа содержит 1 файл

Теоретические основы экстракционных процессов очистки масел.docx

— 29.52 Кб (Скачать)

Теоретические основы экстракционных процессов очистки масел.

Несмотря на то, что явление  растворимости одних веществ в других известно давно (более ста лет) и нашло широкое практическое применение в различных процессах химической технологии, количественной теории для расчета экстракционных процессов до сих пор нет. А в работах Дж.Гильдебранда, В.К.Семенченко, И.И.Шахпаронова, П.А.Золотарева и других разработаны качественные основы теории растворимости и предложены полуэмлирические критерии для подбора оптимального растворителя. Физико-химическую сущность, механизм и количественные закономерности экстракционных процессов в настоящее время большинство отечественных и зарубежных исследователей трактуют с позиций молекулярной теории растворов.

Экстракцию масла проводят в экстракционной колонне или  дисковом контакторе, а затем в  отстойнике отделяют асфальт. Продуктом  процесса является деасфальтизат, который  после селективной очистки (фенолом, фурфуролом или метилпирролидоном) и депарафинизации в растворителе превращается в остаточный компонент  масел (вязкость при 1000С 20-30 сСт) различного назначения. Очистка масел парными  растворителями. В этом процессе (называемом в практике “дуосол-процесс”) сочетается деасфальтизация пропаном с селективной  очисткой смесью фенола с крезолом (растворитель “селекто”). Пропан растворяет масло, а растворитель “селекто” - нежелательные компоненты. Продукт  дуосола подается на депарафинизацию  растворителями и затем на гидрооблагораживание. В результате получают остаточный компонент  масел.

Основы молекулярной теории растворов.

В соответствии с современной  молекулярной теорией растворов фазовое состояние химических веществ определяется двумя противоположно действующими факторами: с одной стороны, межмолекулярным взаимодействием, обусловливающем потенциальную энергию молекул, и, с другой – тепловым движением, которое определяет их кинетическую энергию.

Природа сил межмолекулярного взаимодействия в растворах углеводородов.

Согласно современным  представлениям о межмолекулярном  взаимодействии, в растворах диэлектриков (в частности, в растворах углеводородов) действуют силы Ван-дер-Ваальса (трех типов) и водородные связи.

Ориентационное взаимодействие. Когда молекулы жидкости или растворителя и сырья обладают полярностью, то есть дипольным моментом (дипольный  момент молекулы равен произведению заряда на расстояние между центрами тяжести зарядов), то между различными частями молекул, несущими электрический  заряд, в зависимости от взаимного  их расположения (ориентации) возникают  либо силы отталкивания, либо силы притяжения. Так, положение а, отвечающее взаимному отталкиванию обоих концов молекул, будет неустойчивым. Наоборот, положение, при котором усиливается взаимное притяжение между молекулами жидкости (или молекулами растворителя и сырья), будет более вероятным и устойчивым. Ориентационные силы притяжения тем больше, чем больше дипольные моменты взаимодействующих молекул. Эти силы межмолекулярного взаимодействия являются функцией температуры: чем выше температура, тем сильнее тепловое движение молекул и тем труднее им взаимно ориентироваться. Ориентационное взаимодействие обратно пропорционально расстоянию между диполями в шестой степени (г6), следовательно, оно короткодействующее. Ориентационному взаимодействию в среде полярных растворителей в большей степени подвержены гетероорганические соединения масляного сырья.

Индукционное  взаимодействие.

 Установлено, что растворители, обладающие значительным дипольным  моментом, способны индуцировать дипольный момент у молекул асимметричной и слабоасимметричной структуры. Следовательно, индуцированию подвержены как полярные, так и некоторые неполярные углеводороды масляного сырья. Поляризации подвержены в большей степени полициклические ароматические углеводороды, у которых ароматические кольца слабо экранированы нафтеновыми циклами и короткими алкильными цепями (то есть голоядерные). Под влиянием электростатического поля растворителя в таких молекулах масляной фракции возникает деформация внешнего электронного слоя, что приводит к неравномерному распределению зарядов на отдельных участках молекул. В результате неполярная молекула временно превращается в индуцированный диполь. Молекулы с индуцированным дипольным моментом подвергаются далее ориентационному взаимодействию и переходят в раствор полярного растворителя. Индукционные силы взаимодействия зависят от силы электростатического поля полярной молекулы, то есть от значения дипольного момента и химической природы неполярных молекул, а именно от способности их поляризоваться.

Сила индукционного взаимодействия, как и у ориентационного, обратно  пропорциональна г6, поэтому оно также короткодействующее. Поскольку температура не влияет на поляризуемость, индукционное взаимодействие, в отличие от ориентационного, не зависит от температуры.

Дисперсионное взаимодействие.

 Молекулы не могут  находиться в состоянии покоя  даже при температуре абсолютного  нуля, поэтому в процессе движения электронов в отдельные моменты времени распределение зарядов может стать несимметричным, то есть может образоваться такая конфигурация, в результате которой молекула приобретает мгновенный дипольный момент. Эти быстро меняющиеся (виртуальные) диполи создают вокруг молекулы электрическое поле, которое индуцирует в соседних молекулах дипольные моменты. Это приводит, в свою очередь, к появлению постоянно возобновляющихся сил притяжения, что обусловливает взаимную ориентацию неполярных молекул. Следовательно, природа дисперсионного взаимодействия тоже дипольная и поэтому сила этого взаимодействия обратно пропорциональна г6. Энергия дисперсионного взаимодействия также не зависит от температуры.

Дисперсионное взаимодействие проявляется при взаимодействии не только неполярных, но и полярных молекул и является наиболее универсальным, по сравнению с остальными силами межмолекулярного взаимодействия.

На дисперсионное взаимодействие приходится главная часть сил  притяжения многих полярных молекул. Так, вычисленная энергия когезии  метилэтилкетона при 40 °С состоит на 8 % из энергии ориентационного, на 14 % - индукционного и на 78 % - дисперсионного взаимодействия. Следовательно, на растворение любых компонентов нефтяного сырья в растворителях любой природы преобладающее влияние оказывает дисперсионное взаимодействие.

Водородная связь.

Атом водорода в соединениях  с кислородом, азотом, фтором, хлором, иногда серой и фосфором обладает способностью связывать не один, а два атома этих элементов. С одним из них водород связывается прочной химической (ковалентной) связью, а с другим - менее прочной, так называемой водородной связью. Возможность образования такой Н-связи обусловливается тем, что атом водорода содержит всего один электрон; отдав свой единственный электрон для образования прочной химической связи, ядро водорода с диаметром в тысячи раз меньше диаметров остальных атомов приобретает способность подойти исключительно близко к другим атомам молекул, не вызывая при этом сил отталкивания, и вступать во взаимодействие с их электронами. Прочность Н-связи зависит от свойств тех атомов, между которыми находится атом водорода, и обычно составляет 8-40 кДж/моль против 8-12 кДж/моль обычной Ван-дер-Ваальсовой связи (но на порядок слабее ковалентной связи).

Высокая ассоциация молекул  спиртов II - ОН, образование гидратов аммиака, кристаллическое состояние карбамида обусловливаются образованием водородной связи. Водородная связь объясняет аномально высокие температуры кипения и плавления ряда веществ, аномальную диэлектрическую проницаемость и не соответствующую строению молекул растворимость. Различают два вида водородной связи: межмолекулярную и внутримолекулярную. В первом случае атом водорода связывает два атома, принадлежащих разным молекулам (например, растворителям и масляному сырью), во втором случае оба атома принадлежат одной и той же молекуле. Образование водородной связи наиболее вероятно при пониженных температурах; с повышением температуры водородные связи ослабляются или рвутся вследствие усиления теплового движения молекул.

Классификация растворителей.

По способности растворять групповые химические компоненты нефтяного  сырья органические и некоторые  неорганические растворители можно классифицировать на две группы.

К первой группе относятся  неполярные растворители, не обладающие дипольным моментом, межмолекулярное взаимодействие которых с растворяемым осуществляется за счет дисперсионных сил. Неполярными (или слабополярными) растворителями являются низкомолекулярные жидкие или сжиженные алканы, бензол, а также соединения с очень небольшим дипольным моментом - толуол, четыреххлористый углерод, этиловый эфир, хлороформ и т.д.

Ко второй группе относятся  полярные растворители с высоким  дипольным моментом. Взаимодействие полярных растворителей с растворяемым веществом носит смешанный характер и складывается из дисперсионного эффекта и ориентационного, причем последний часто является преобладающим. Полярными растворителями, широко применяемыми при очистке масел, являются фенол, фурфурол, крезолы, N-метилпирролидон, ацетон, метилэтилкетон и другие.

Различный механизм межмолекулярного взаимодействия в экстракционных системах обусловливает различающиеся между собой растворяющие и избирательные способности у неполярных и полярных растворителей.

Классификация растворителей  по признаку полярности их молекул не случайна. Именно полярность растворителей и, следовательно, соотношение составляющих Ван-дер-Ваальсовых сил, обусловливающих межмолекулярные взаимодействия в экстракционных системах, предопределяет растворяющие и избирательные свойства экстрагентов.

Основная составляющая Ван-дер-Ваальсовых сил в неполярных растворителях - дисперсионная. Дисперсионное взаимодействие – наиболее универсальный тип  межмолекулярных взаимодействий, который  проявляется вне зависимости  от полярности молекул и потому преимущественно отражает растворяющие свойства растворителей. Электростатическая же составляющая (ориентационная + индукционная) Ван-дер-Ваальсовых сил предопределяет преимущественно избирательные свойства полярных растворителей. Следовательно, растворяющая и избирательная способности полярных растворителей будут обусловливаться соотношением электростатических и дисперсионных составляющих межмолекулярных взаимодействий.

Неполярные и слабополярные  растворители характеризуются тем, что притяжения между молекулами растворителя и экстрагируемого вещества (компонента) происходят за счет дисперсионных сил. Поскольку дисперсионное взаимодействие зависит не от полярности, а главным образом от поляризуемости молекул, и оно оказывает преобладающее влияние по сравнению с другими составляющими межмолекулярного взаимодействия.Неполярные растворители являются более универсальными по растворяющей способности, но относительно менее селективными. Причем избирательность неполярных растворителей проявляется, в первую очередь, по молекулярной массе углеводородов и только затем по групповому химическому составу.

При обычных температурах неполярные и слабополярные растворители, например, низкомолекулярные алканы, бензол и толуол, смешиваются с жидкими углеводородами масляных фракций в любых соотношениях по закономерностям идеальных растворов независимо от их химического строения. Избирательное же действие неполярных растворителей проявляется главным образом при экстракции (кристаллизацией) твердых углеводородов (высокомолекулярных парафинов и церезинов) при низких температурах, а также в отношении смол и асфальтенов при температурах, близких к критическим температурам растворителей.

У твердых углеводородов  масляных фракций растворимость  в неполярных растворителях ограниченная, и она зависит от молекулярной массы как углеводородов, так и растворителя, а также от температуры растворения (экстракции). С повышением молекулярной массы растворяемых твердых углеводородов (следовательно, и температуры плавления) она падает, а с повышением температуры экстракции растет, и при температуре плавления растворяемых углеводородов они смешиваются с растворителем неограниченно, подобно прочим жидким углеводородам. Растворимость твердых углеводородов в низкомолекулярных алканах зависит от молекулярной массы последних, причем эта зависимость экстремальна. Поэтому при растворении масляных фракций, содержащих углеводороды с высокой температурой плавления, образование истинных растворов возможно не при всяких температурах и соответственно не при всяких соотношениях с неполярным растворителем любой молекулярной массы. В тех случаях, когда температура растворения ниже температуры плавления твердых углеводородов последние независимо от их химического строения будут выделяться из растворителя в виде кристаллов и тем интенсивнее, чем выше их концентрация и молекулярная масса и чем ниже температура кипения растворителя.

Следовательно, неполярные растворители при низких температурах растворяют углеводороды масляных фракций избирательно в зависимости от их температуры плавления. Эта закономерность углеводородов обусловливает возможность использования неполярных растворителей для целей депарафинизации кристаллизацией масляных рафинатов, выделения нафталина, разделения ксилолов и т.д. Следует отметить, что для этих целей могут применяться и некоторые полярные растворители, например, ацетон, метилэтилкетон или их смеси с неполярными растворителями, в среде которых проявляется аналогичная избирательность растворимости твердых углеводородов.

Низкая растворимость  твердых углеводородов объясняется  тем, что они, имея трехмерную упорядоченную  структуру, обладают высоким уровнем энергии связи между молекулами. Введение в систему растворителя, хотя и ослабляет межмолекулярное взаимодействие, но оно, особенно при низких температурах, может оказаться недостаточным для полного разрушения кристаллической структуры и перевода твердых углеводородов в раствор.

Установлено, что при экстракции неполярными экстрагентами при  температурах вблизи критического состояния  растворителей также проявляется  избирательная растворимость высокомолекулярных углеводородов масляных фракций. Обусловливается это тем, что с приближением температуры экстракции к критической происходит резкое снижение плотности растворителя и соответственное ослабление прочности связей между молекулами растворителя и растворенных в нем углеводородов. В то же время силы дисперсионного взаимодействия между молекулами самих углеводородов при этом практически не изменяются. В результате при определенных температурах внутримолекулярные силы углеводородов могут превысить межмолекулярные силы взаимодействия между растворителем и углеводородами и последние выделяются в виде дисперсной фазы. При этом, поскольку энергия дисперсионного взаимодействия является функцией от молекулярной массы молекулы, в первую очередь из раствора выделяются наиболее высокомолекулярные смолисто-асфальтеновые соединения, затем по мере повышения температуры углеводороды с меньшей молекулярной массой. При температурах, превышающих критическую, из раствора выделяются все растворенные в нем соединения независимо от молекулярной массы и химической структуры углеводородов. Наблюдающаяся при этом избирательность разделения по химическому строению молекул является следствием различия сил межмолекулярного взаимодействия углеводородов сырья. Так, силы взаимного притяжения молекул парафиновых и нафтеновых углеводородов значительно слабее, чем ароматических и смол. Поэтому при одинаковых молекулярных массах более легко переходят в слой неполярного растворителя парафино- нафтеновые углеводороды, чем ароматические и смолы или асфальтены, тем самым достигается определенная избирательность разделения и по химическому строению молекул.

Информация о работе Теоретические основы экстракционных процессов очистки масел