Тягово-динамический расчёт ЗИЛ 130

Автор: Пользователь скрыл имя, 15 Апреля 2013 в 11:49, курсовая работа

Описание работы

Перед автомобильной промышленностью в настоящее время стоят задачи, связанные с увеличением выпуска экономичных автомобилей с дизельными двигателями, позволяющих значительно сократить расход топлива, а следовательно и затраты на него. Одновременно с ростом производства автомобилей особо большой грузоподъемности (110 и 180 тонн) необходимо создавать мощности для выпуска грузовых автомобилей малой грузоподъемности - полтонны. В настоящее время проводятся значительные работы по увеличению выпуска и повышению надежности автомобилей, работающих на сжатом и сжиженном газах. Возрастает производство специализированных автомобилей и прицепов для перевозки различных грузов.

Работа содержит 1 файл

Курсач ЗИЛ-130.doc

— 467.00 Кб (Скачать)

Продолжение таблицы 1.5.

1

v5

км/ч

18

28

39

49

59

69

79

90

5

Н

4002,9

4408,7

4676,7

4807,0

4799,7

4654,6

4371,8

3938,4


 

v

км/ч

2,0

14,6

27,1

39,7

52,3

64,9

77,4

90,0

Pw

Н

0,7

35,4

122,8

262,9

455,6

701,1

999,2

1350,0

Py

Н

2065,3

2078,5

2112,0

2165,5

2239,2

2333,1

2447,1

2581,2

PS

Н

2065,9

2113,9

2234,7

2428,4

2694,9

3034,2

3446,3

3931,2


По данным таблицы 1.5 строим график силового баланса (рис. 1.4).

1.5 Построение динамической характеристики

 

Динамическая характеристика представляет собой зависимость динамического  фактора D от скорости автомобиля:

.

Динамический фактор определяется по формуле:

,

где Рк – полная окружная сила, Н; РW – сила сопротивления воздуха, Н; – свободная сила тяги, Н; Ra=103250 Н – суммарная нормальная опорная реакция всех колёс автомобиля.

Расчёт значения динамического  фактора ведём для wе=62,8 рад/с, v1min=2 км/ч. Определяем по лучевой диаграмме скорость автомобиля, затем по графику силового баланса находим значение Рсв=28397,2 Н, тогда .

При равномерном движении D=y, в этом случае динамический фактор определяет дорожное сопротивление, которое может преодолеть транспортное средство на соответствующей передаче при определённой скорости: , где i – коэффициент, сопротивления подъёму (в расчётах принимаем i=0); – коэффициент сопротивления качению.

Расчёт коэффициента сопротивления  качения f при v=12 км/ч:

.

Расчетные значения f заносим в таблицу 1.6.

Таблица 1.6.

Результаты расчета динамического  фактора

Параметр

Ед. изм

1

2

3

4

5

6

7

8

w

рад/с

68

106

144

182

220

258

296

335

7,44

v1

км/ч

2

4

5

7

8

9

11

12

D1

-

0,288

0,318

0,337

0,346

0,346

0,335

0,315

0,284

4,1

v2

км/ч

4

7

9

12

14

17

19

22

D2

-

0,159

0,175

0,186

0,191

0,191

0,185

0,174

0,156

2,29

v3

км/ч

8

12

17

21

26

30

35

39

D3

-

0,089

0,098

0,103

0,106

0,105

0,102

0,095

0,085

1,47

v4

км/ч

12

19

26

33

40

47

54

61

D4

-

0,057

0,062

0,065

0,067

0,066

0,063

0,058

0,050

1

v5

км/ч

18

28

39

49

59

69

79

90

D5

-

0,038

0,041

0,043

0,043

0,041

0,037

0,032

0,025


Таблица 1.7.

Результаты расчета коэффициента сопротивления качения

v, км/ч

2

12

24

36

48

60

72

84

90

f

0,02

0,0201

0,0204

0,0208

0,0214

0,0222

0,0232

0,0244

0,025


 

По данным табл. 1.7 строим график f=f(v) (рис. 1.5), где пересечение кривой f=f(v) с кривой D=f(v) даст максимальную скорость автомобиля.

1.6 Определение ускорения автомобиля

 

Величину ускорения на каждой передаче можно определить по формуле:

 м/с2,

где величину (D-y) можно определить графически по динамической характеристике: ; g – ускорение свободного падения, м/с2; d – коэффициент учёта вращающихся масс, его величину определяют по эмпирическоё формуле: .

Расчёт d на первой передаче (iк1=7,44):

.

Расчётные значения d на различных передачах заносим в табл. 1.8.

Расчёт ускорения автомобиля на первой передаче при wе=68 рад/с. Находим значение (D-f) по графику динамической характеристики при скорости v, соответствующей wе=68 рад/с: .

м/с2.

Расчётные значения j заносим в табл. 1.8.

Таблица 1.8.

Результаты расчета ускорения

d

Параметр

Ед. изм.

1

2

3

4

5

6

7

8

w

рад/с

68

106

144

182

220

258

296

335

7,44

3,254

v1

км/ч

2

4

5

7

8

9

11

12

j1

м/с2

0,808

0,896

0,954

0,983

0,981

0,949

0,888

0,793

4,1

1,712

v2

км/ч

4

7

9

12

14

17

19

22

j2

м/с2

0,795

0,887

0,948

0,977

0,976

0,942

0,878

0,779

2,29

1,250

v3

км/ч

8

12

17

21

26

30

35

39

j3

м/с2

0,538

0,607

0,652

0,671

0,666

0,637

0,582

0,501

1,47

1,126

v4

км/ч

12

19

26

33

40

47

54

61

j4

м/с2

0,319

0,365

0,392

0,400

0,389

0,359

0,311

0,241

1

1,080

v5

км/ч

18

28

39

49

59

69

79

90

j5

м/с2

0,164

0,190

0,199

0,193

0,170

0,131

0,075

0,001


 

По значениям табл. 1.8 строим графики  ускорения  (рис. 1.6).

 

1.7 Определение времени и пути разгона автомобиля

 

Для определения времени разгона  график обратных ускорений разбивается  на ряд интервалов скоростей, в каждом из которых определяется площадь, заключённая  между кривой величин, обратных ускорению  и осью абсцисс, эта площадь Fi времени движения.

Время движения в каждом интервале  определяется по формуле:

с,

где i – порядковый номер интервала; Fi – площадь, заключённая между кривой и осью абсцисс, мм2; а=20 мм в с2/м – масштабный коэффициент, показывающий количество мм на графике 1/j в с2/м; b=6 мм в м/с – масштабный коэффициент скорости, показывающий количество мм на графике скорости в 1 м/с.

При расчёте условно считается, что разгон на каждой передаче определяется при максимальной частоте вращения коленвала двигателя. Время переключения передач для карбюраторного двигателя с коробкой передач, оснащённой синхронизаторами равно 1¸1,5 с. Падение скорости за время переключения передач определяется по формуле:

 м/с,

где Dtп=1¸1,5 с – время переключения передач; y – коэффициент суммарного дорожного сопротивления (при малых скоростях y=0,02); d'=1,04 – коэффициент, учёта вращающихся масс автомобиля, когда двигатель автомобиля отсоединён от колёс.

Падение скорости за время переключения передач очень мало:

м/с, поэтому оно не учитывается.

Время разгона на 15-ти метровом интервале:

с.

Расчётные значения времени разгона  на различных интервалах заносим  в табл. 1.10.1, а на графике t=f(v) время разгона откладывается нарастающим итогом.

Таблица 1.9.1.

Результаты расчета времени  разгона

Интервал

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fi

мм2

125

113

104

120

104

111

130

281

348

410

910

705

1000

1200

17778

t

с

1,04

0,94

0,87

1

0,87

0,93

1,08

2,34

2,9

3,42

7,58

5,88

8,33

10

14,6


 

Для определения пути разгона график времени разгона разбиваем на интервалы и подсчитываем площади, заключённые между кривой и осью ординат.

Путь разгона на каждом интервале  определяем по формуле:

 м,

где DSi – путь разгона на i-том интервале скоростей, м; Fi – площадь между кривой t=f(v) и осью ординат, мм2; с – масштабный коэффициент времени, показывающий количество мм на графике t=f(v) в 1 с, с=3,33 мм в 1 с.

Расчёт пути разгона на первом интервале:

м.

Значения DSi заносим в табл. 1.10.2. Найденный в каждом интервале путь разгона последовательно суммируем и строим график S=f(v) (рис. 1.8).

Таблица 1.9.2.

Результаты расчета пути разгона

Интервал

1

2

3

4

5

6

7

8

9

10

11

12

Fi

мм2

30

88

125

185

405

552

910

1350

1615

1805

4095

5750

Si

м

0,45

1,32

1,88

2,78

6,08

8,28

13,7

20,3

24,2

27,1

61,4

86,3


 

Все полученные графики при расчёте  тягово-динамических параметров автомобиля ЗИЛ-130-76 представлены на первом листе.

 

2. Расчёт сцепления и анализ  конструкции

2.1 Назначение сцепления. Требования к сцеплению

 

Сцепление предназначено для плавного трогания автомобиля с места, кратковременного разъединения двигателя и трансмиссии при переключении передач и предотвращению воздействия на трансмиссию больших динамических нагрузок, возникающих на переходных режимах и при движении по дорогам с плохим покрытием. При конструировании фрикционных сцеплений помимо основных требований (минимальная собственная масса, простота конструкции, высокая надёжность и т.п.) необходимо обеспечить следующее:

Информация о работе Тягово-динамический расчёт ЗИЛ 130