Шпаргалка по "Биологии"

Автор: Пользователь скрыл имя, 27 Декабря 2011 в 13:21, шпаргалка

Описание работы

1. Задачи физиологии растений. Теоретическая и практическая значимость физиологии растений. 4
2. История развития физиологии растений как науки. Роль отечественных учёных в развитии физиологии растений. 4
3. Химические вещества, входящие в состав растительных клеток. Ферменты, их основные свойства и физиологическое значение. 5
4. Клеточная оболочка, её структура и физиологические функции. Фазы роста клетки, этапы образования клеточной оболочки у растений. 6
5. Основные свойства цитоплазмы: вязкость, эластичность, подвижность, раздражимость. 7
6. Мембранный принцип организации поверхности цитоплазмы и органелл клетки. Функции мембран. Аппарат Гольджи, рибосомы, пероксисомы, лизосомы и митохондрии. 8

Работа содержит 1 файл

Ответы на экзаменационные вопросы по физиологии растений.doc

— 639.50 Кб (Скачать)

46. История открытия  и изучения фотосинтеза.

Фотосинтез - это процесс трансформации поглощенной  организмом энергии света в химическую энергию органических (и неорганических) соединений. Главную роль в этом процессе играет использование энергии света для восстановления СО2 до уровня углеводов. Однако в процессе фотосинтеза могут восстанавливаться сульфат или нитрат, образовываться Н2: энергия света расходуется также на транспорт веществ через мембраны и на другие процессы. Поэтому часто говорят о фототрофной функции фотосинтеза, понимая под этим использование энергии света в различных эндергонических реакциях в живом организме. Фотосинтез осуществляют высшие растения, водоросли и некоторые бактерии. Он играет определяющую роль в энергетике биосферы.

Началом экспериментальных работ в области  фотосинтеза послужили опыты  английского химика Дж. Пристли. В 1771 г. он обнаружил, что растения мяты, помещенные в стеклянный кувшин, опрокинутый  в сосуд с водой, используют в нем воздух, «испорченный» горением свечи или дыханием мыши.

Ингенхауз показал, что зеленые растения выделяют кислород только при действии на них  света. Зеленые растения в темноте, а их незеленые органы (например, корни) в темноте и при освещении поглощают кислород точно так же, как животные в процессе дыхания. Применив методы количественного анализа, швейцарский ученый Т. Соссюр в 1804 г. показал, что растения на свету действительно усваивают углерод С02, выделяя при этом эквивалентное количество кислорода. Однако нарастание сухой массы растений превышает прирост количества углерода. Это превышение было значительно большим, чем количество поглощенных минеральных веществ. Соссюр сделал вывод, что органическая масса растения образуется не только за счет С02. но и за счет воды, т. е. вода такой же необходимый элемент питания, как и диоксид углерода. Результаты этих опытов были тщательно проверены французским агрохимиком Ж. Б. Бус-сенго (1840), который полностью подтвердил данные Соссюра. Французские химики П. Ж. Пельтье и Ж. Каванту в 1817 г. выделили из листьев зеленый пигмент и назвали его хлорофиллом. который, как выяснилось позднее, целиком локализован в хло-ропластах. В 1865 г. немецкий физиолог растений Ю. Сакс продемонстрировал, что на свету в листьях образуется крахмал и что он находится в хлоропластах. Опыты ставили следующим образом. Листья предварительно выдерживали в темноте, затем освещали половинку каждого листа, а другую половинку, закрытую плотным картоном, оставляли в темноте. После экспозиции листья обесцвечивали спиртом и обрабатывали раствором йода. Освещенные части листьев становились темно-фиолетовыми из-за образования комплекса крахмала с йодом, а затемненные участки оставались неокрашенными. Тимирязев изучал влияние света, использовал в работе очень, узкие щели и помещал в полоски монохроматического света тонкие пробирки с высечками из листьев. Для этих Опытов ему пришлось разработать очень чувствительные методы газового микроанализа. В результате было установлено, что интенсивность ассимиляции С02 максимальна при освещении листьев красным светом, т. е. тем светом, который в наибольшей степени поглощается хлорофиллом.

Тимирязев постулировал, что при ассимиляции  С02 хлорофилл служит оптическим сенсибилизатором (т. e. веществом, увеличивающим чувствительность к свету) и что он непосредственно участвует в процессе фотосинтеза, необратимо переходя из восстановленного состояния в окисленное. Он сформулировал также идею о космической роли фотосинтеза: фотосинтез — единственный процесс, с помощью которого космическая солнечная энергия улавливается и остается на Земле, трансформируясь в другие формы энергии. Тимирязев писал, что в хлоропласте лучистая энергия солнечного света превращается в химическую энергию углеводов. Крахмал, клейковина и другие соединения, консервирующие солнечную энергию, служат нам пищей. Освобождаясь в нашем теле в процессе дыхания эта энергия солнечного луча согревает нас, приводит в движение, поддерживает мышление.

Результаты  изучения воздушного питания растений за первые сто лет после опытов Пристли нашли свое выражение в общем уравнении фотосинтеза: 6CO2+6H2O+hv+хлорофилл à C6H12O6 +6O2.

47. Хлоропласты и  их роль в процессе  фотосинтеза; структура  хлоропластов. Движения  хлоропластов. Неассимилирующие хлоропласты.

Хлоропласты высших растений имеют форму двояковыпуклой линзы (диска), которая наиболее удобна для поглощения солнечных лучей. Их размеры, количество, расположение в клетке также полностью отвечают назначению: как можно эффективнее поглощать солнечную энергию, как можно полнее усваивать углерод. Хлоропласты способны к активным движениям — изменению ориентации тела и перемещению в пространстве. Скорость движения хлоропластов около 0,12 мкм/с. Их передвижения вызываются физическими и химическими факторами. Например, под влиянием яркого света хлоропласты поворачиваются узкой стороной диска к падающим лучам и перемещаются на боковые стенки клеток. Хлоропластам присуща также хемотаксическая чувствительность — они передвигаются в направлении более высокой концентрации СО2 в клетке. Установлен и эндогенный суточный ритм движения хлоропластов: днем они обычно выстраиваются вдоль стенок, ночью опускаются на дно клетки.

Строение  хлоропласта, обнаруживаемое с помощью электронного микроскопа, весьма сложное. Подобно ядру и митохондриям хлоропласт окружен оболочкой, состоящей из двух липопротеидных мембран. Внутреннюю среду представляет относительно однородная субстанция — матрикс, или строма, которую пронизывают мембраны — ламеллы. Ламеллы, соединенные друг с другом, образуют пузырьки — тилакоиды. Плотно прилегая друг к другу, тилакоиды образуют граны, которые различают даже под световым микроскопом. В свою очередь, граны в одном или нескольких местах объединены друг с другом с помощью межгранных тяжей — тилакоидов стромы. Пигменты хлоропласта, участвующие в улавливании световой энергии, а также ферменты, необходимые для световой фазы фотосинтеза, вмонтированы в мембраны тилакоидов. При выращивании сельскохозяйственных растений следует иметь в виду, что на структуру хлоропластов, а следовательно, и их функциональную активность большое влияние оказывает режим минерального питания растений. При недостатке азота хлоропласты становятся в 1,5—2 раза мельче, дефицит фосфора и серы нарушает нормальную структуру ламелл и гран, одновременная нехватка азота и калия приводит к переполнению хлоропластов крахмалом из-за нарушения нормального оттока ассимилятов. При недостатке кальция нарушается структура наружной мембраны хлоропласта. Для поддержания структуры хлоропласта также необходим свет. В темноте идет постепенное разрушение тилакоидов гран и стромы.

Неассимилирующие  хлоропласты это хлоропласты  стареющих листьев.\

48. Пигменты листа.  Спектры поглощения  пигментов листа.

Пигменты  — важнейший компонент аппарата фотосинтеза. Пигменты пластид относятся к трем классам веществ: хлорофиллам, фикобилинам и каротиноидам.

Хлорофиллы. Структура и состав хлорофиллов. Хлорофилл - сложный эфир дикарбоновой кислоты хлорофиллина, у которой одна карбоксильная группа этерифицирована остатком метилового спирта, а другая - остатком одноатомного непредельного спирта фитола. Порфириновое кольцо (основа хлорофилла) представляет собой систему из девяти пар коньюгированных (сопряженных) чередующихся двойных и одинарных связей с 18 делокализованными п-электронами. Хлорофилл b отличается от хлорофилла а тем, что у 3-го углерода вместо метильной находится формильная (-СНО) группа. Все фотосинтезирующие растения, включая все группы водорослей, а также цианобактерии, содержат хлорофиллы группы а. Хлорофилл b представлен у высших растений, у зеленых водорослей и эвгленовых. У бурых и диатомовых водорослей вместо хлорофилла b присутствует хлорофилл с, а у многих красных водорослей — хлорофилл d. Хлорофиллы хорошо растворимы в этиловом эфире, бензоле, хлороформе, ацетоне, этиловом спирте, плохо растворимы в петролейном эфире и нерастворимы в воде. Структура хлорофилла, лишенная фитола, называется хлорофиллидом. При замещении атома магния протонами в молекуле хлорофиллов образуются соответствующие феофетины.

Раствор хлорофилла а в этиловом эфире имеет сине-зеленый цвет, хлорофилла b - желто-зеленый. Резко выраженные максимумы поглощения хлорофиллов лежат в красной и синей частях спектра. В этиловом эфире максимумы поглощения хлорофиллов группы а в красной части спектра - в пределах 660-663 нм, в синей - 428 —430 нм, хлорофилла b-соответственно в пределах 642-644 и 452-455 нм. Хлорофиллы очень слабо поглощают оранжевый и желтый свет и совсем не поглощают зеленые и инфракрасные лучи.

Фикобиллины. Фикобилины делятся на три основные группы: 1) фикоэритрины — белки красного цвета с максимумом поглощения от 498 до 568 нм, 2) фикоцианины — сине-голубые белки с максимумами поглощения от 585 до 630 нм, 3) аллофикоцианины — синие белки с максимумами поглощения от 585 до 650 нм. Все примерно от 498 до 650. Значение фнкобилинов. Максимумы поглощения света у фикобилинов находятся между двумя максимумами поглощения у хлорофилла: в оранжевой, желтой и зеленой частях спектра (см. рис. 3.2). Значение такого распределения максимумов поглощения становится понятным, если вспомнить оптические свойства воды, которая поглощает прежде всего длинноволновые лучи. На глубине 34 м в морях и океанах полностью исчезают красные лучи, на глубине 177 м -желтые, на глубине 322 м — зеленые и, наконец, на глубину свыше 500 м не проникают даже синие и фиолетовые лучи В связи с таким изменением качественного состава света в верхних слоях морей и океанов обитают преимущественно зеленые водоросли, глубже — синезеленые и еще глубже -водоросли с красной окраской.

Каротиноиды - жирорастворимые пигменты желтого, оранжевого, красного цвета - присутствуют в хлоропластах всех растений. Они входят также в состав хромопластов в незеленых частях растений, например в корнеплодах моркови. В зеленых листьях каротиноиды обычно незаметны из-за присутствия хлорофилла, но осенью, когда хлорофилл разрушается, именно каротиноиды придают листьям характерную желтую и оранжевую окраску. К каротиноидам относятся три группы соединений: 1) оранжевые или красные пигменты каротины 2) желтые ксантофиллы 3) каротиноидные кислоты - продукты окисления каротиноидов с укороченной цепочкой и карбоксильными группами. Каротины и ксантофиллы хорошо растворимы в хлороформе, бензоле, сероуглероде, ацетоне. Каротины легко растворимы в петролейном и диэтиловом эфирах, но почти нерастворимы в метаноле и этаноле. Ксантофиллы хорошо растворимы в спиртах и значительно хуже в петролейном эфире. Роль каротинондов в процессах фотосинтеза. Каротиноиды -обязательные компоненты пигментных систем всех фотосинтези-рующих организмов. Они выполняют ряд функций, главные из которых; 1) участие в поглощении света в качестве дополнительных пигментов (поглощающих свет в сине-фиолетовой и синей частях спектра) 2) защита молекул хлорофиллов от необратимого фотоокисления. Возможно, каротиноиды принимают участие в кислородном обмене при фотосинтезе. Спектры поглощения каротиноидов характеризуются двумя полосами в фиолетово-синей и синей области от 400 до 500 нм.

49. Этапы биосинтеза хлорофилла (исследования Т.А. Годнева).

Первый  этап биосинтеза хлорофиллов у растений - образование б-аминолевулиновой кислоты (АЛК) из С5-дикарбоновых кислот. Показано, что глутаминовая кислота через 2-гидроксиглутаровую превращается в 4,5-диоксовалериановую, которая затем аминируется за счет аланина или других аминокислот. Реакция переаминироваиия катализируется АЛК-трансаминазой с участием пиридоксальфосфата в качестве кофермента. Для синтеза АЛК может использоваться и а-кетоглутаровая (2-оксоглутаровая) кислота.

Циклизация  двух молекул АЛК приводит к образованию  пиррольного соединения - порфобилиногена. Из четырех пиррольных колец формируется уропорфириноген, который превращается в протопорфирин IX. Дальнейший путь превращений протопорфирина может быть различным. С участием железа формируется, входящий в состав цитохромов, каталазы, пероксидазы и гемоглобина. Если в молекулу протопорфирина включается магний, затем карбоксильная группа у С10 этери-фицируется метильной группой S-аденозил-L-метионина и замыкается циклопентановос кольцо (V), то образуется прото-хлорофиллид. Пол действием света в течение нескольких секунд протохлорофиллид превращается в хлорофиллид а в результате гидрирования двойной связи у С78 в IV пиррольном ядре. У низших растений и некоторых голосеменных (у хвойных) хлорофиллид может образовываться в темноте. Хлорофиллид обладает теми же спектральными свойствами, что и хлорофилл. Последний этап в формировании молекулы хлорофилла а — этерификация фитолом, который, как и все полиизопреновые соединения, синтезируется из ацетил-СоА через мевалоновую кислоту. По данным А. А. Шлыка (1965), хлорофилл b может образовываться из вновь синтезированных молекул хлорофилла а. Все описанные процессы, начиная с образования АЛК, осуществляются в хлоропластах. Первые признаки зеленения выращенных в темноте этиолированных покрытосеменных растений наблюдаются через 2—4 ч после начала освещения.

50. Фотофизический этап  фотосинтеза. Понятие  о пигментных системах  и реакционном  центре.

51. Пластиды, их структура и функции.

Пластиды  — органеллы, найденные исключительно  в клетках высших растений и водорослей. Они ответственны за фотосинтез, хранение разнообразных продуктов метаболизма, а также за синтез многих ключевых молекул растительных клеток. Всем пластидам свойствен ряд общих черт. Они имеют собственный геном, одинаковый у всех представителей одного вида растений, собственную белоксинтезирующую систему; от цитозоля пластиды отделены двумя мембранами — наружной и внутренней. Для некоторых фототрофных организмов число пластидных мембран может быть больше.

Пропластиды являются предшественниками остальных типов пластид и всегда присутствуют в меристематических клетках. Клетки меристем покрытосеменных растений, как правило, содержат около 20 пропластид. Из пропластид формируются остальные типы пластид — амилопласты, лейкопласты, этиопласты, хлоропласты, хромопласты. Набор пластид в конкретной клетке зависит от типа ее дифференцировки.

Амилопласты неокрашенные пластиды, которые внешне похожи на пропластиды, но содержат гранулы крахмала.

Хлоропласты — зеленые фотосинтезирующие пластиды, отвечающие за поглощение и трансформацию энергии света. В высших растениях хлоропласты имеют преимущественно сферическую или эллипсоидную форму, у мхов и водорослей она может быть иной.

Хромопласты желтые, оранжевые или красные пластиды. Их цвет зависит от комбинации каротиноидов — единственных липофильных пигментов высших растений. Хромопласты ответственны за окраску многих плодов (например, помидоров, цитрусовых), цветков (лютиков, бархатцев) и корней (морковь). Хромопласты могут развиваться непосредственно из пропластид или повторно дифференцироваться из хлоропластов, как, например, в созревающих плодах помидора.

Принципиально важно, что пластиды растений — это  органеллы, выполняющие в растительной клетке разнообразные функции. При этом функции пластид различны для клеток различных тканей. Безусловно, главнейшей функцией пластидной системы является фотосинтез, происходящий в хлоропластах.

Другая  важнейшая функция пластид — биосинтез многих соединений растительной клетки. Это связано с необходимостью компартментации в эукарио-тической клетке синтезируемых веществ. Растительная клетка в этом смысле имеет преимущества перед другими эукариотами, так как имеет два дополнительных компартмента — пластиды и вакуоли, которые используются клеткой весьма активно. В пластидах протекают промежуточные стадии многих метаболических процессов. Здесь у растений, помимо образования хлорофиллов и каротиноидов, синтезируются пурины и пиримидины, большинство аминокислот и все жирные кислоты (у животных эти процессы осуществляются в цитозоле). В пластидах также происходит восстановление ряда неорганических ионов — нитрита (N02), который является продуктом цитозольного восстановления нитрата, и сульфата (S04). Пластиды — основное место запасания железа: в них локализовано до 85 % фитоферритина. Пластидный компартмент образно можно назвать «фабрикой экологически вредных и энергоемких производств» растительной клетки, связанных с токсичными интермедиатами, свободнорадикальными процессами и высокими энергиями.

Информация о работе Шпаргалка по "Биологии"