Промысловый сбор и подготовка нефти и газа к транспорту

Автор: Пользователь скрыл имя, 13 Мая 2012 в 23:41, курс лекций

Описание работы

Нефть, газ и вода от устьев скважин, рассредоточенных по площади месторождения, направляются по выкидным ли¬ниям в систему сбора и транспортирования

Работа содержит 1 файл

Система сбора и подготовка нефти и газа.doc

— 1.28 Мб (Скачать)

 В  вертикальном цилиндри-ческом гравитационном  сепараторе (рис. 4.5) газонефтяная смесь через патрубок поступает в раздаточный коллектор и через щелевой выход попадает в основную сепарационную секцию /. В осадительной секции II из нефти при ее течении по наклонным плоскостям происходит дальнейшее выделение окклюдиро-ванных пузырьков газа. Разгазированная нефть поступает в секцию ее сбора III, из которой через патрубок отводится из сепаратора. Газ, выделившийся из нефти на наклонных плоскостях, попадает в каплеуловительную секцию IV, проходит через жалюзийную насадку и по трубопроводу выходит из сепаратора. Капли нефти, захваченные потоком газа и неуспевающие осесть под действием силы тяжести, в жалюзийных решетках прилипают к стенкам и стекают по дренажной трубке в секцию сбора нефти.

Гидроциклонный  двухъемкостный сепаратор (рис. 4.6) применяют на промыслах для работы на / ступени сепарации. Газонасыщенная нефть через тангенциальный вход поступает в гидроциклонную головку, где за счет центробежных сил нефть и газ разделяются на самостоятельные потоки. В верхнюю емкость нефть и газ поступают раздельно. Нефть по направляющей полке стекает на уголковый разбрызгиватель, в котором поток нефти разбивается на отдельные струи и происходит дальнейшее выделение газа. По сливной полке разгазированная нефть собирается в нижней емкости сепаратора. При достижении определенного объема нефти в нижней емкости поплавковый регулятор уровня через исполнительный механизм направляет дегазированную нефть в отводной трубопровод. Газ, отделившийся от нефти в дегазаторе, проходит в верхней емкости перфорированные перегородки, где происходит выравнивание скорости газа и частичное выпадение жидкости. Окончательная очистка газа происходит в жалюзийной насадке 7. Отделенная от газа жидкость по дренажной трубке 10 стекает в нижнюю емкость 9 [36].

Рис. 4.6. Гидроциклонный двухъемкостный сепаратор:

1 — тангенциальный ввод газонефтяной смеси; 2 — головка гидроциклона; 3 — отбойный козырек для газа; 4 — направляющий патрубок; 5 — верхняя емкость сепаратора; 6 — перфорированные сетки для улавливания капельной жидкости; 7 — жалюзийная насадка; 8 — отвод газа; 9 — нижняя емкость гидроциклона; 10 — дренажная трубка; 11 — уголковые разбрызгиватели; 12 — направляющая полка; 13 — перегородка; 14 — исполнительные механизмы


Падение давления в сборных  коллекторах в  результате движения по ним газонефтяной смеси может приводить к частичному выделению газа из нефти. В этом случае в сепарационную установку можно подавать нефть и газ разделенными потоками. Такой принцип использован на блочных сепарационных установках с предварительным отбором газа (рис. 4.7). Газожидкостная смесь от скважин поступает в устройство предварительного отбора газа, которое расположено на наклонном участке подводящего трубопровода. Устройство предварительного отбора газа представляет собой отрезок подводящего трубопровода значительно большего диаметра, чем основная подводящая линия, установленный под углом 3 — 4° к горизонту, с вертикально приваренной газоотводной вилкой, которая соединена трубопроводом с каплеуловительной секцией. Предварительно отобранный газ проходит через каплеуловитель, где в жалюзийных насадках отделяется от капельной влаги. Нефть вместе с газом, не успевшим выделиться из нефти и не попавшим в газоотводную вилку, поступает в технологическую емкость, в которой на диффузоре и наклонных полках скорость потока снижается и происходит интенсивное разгазирование. Выделившийся в технологической емкости газ также проходит через каплеуловитель.

Разработано и применяется большое число  аппаратов для разгазирования и  частичного обезвоживания нефти  перед подачей ее на установку подготовки товарной нефти. 
 
 
 

4.5. СИСТЕМЫ СБОРА И ПОДГОТОВКИ  ГАЗА

Добываемые  из газовых месторождений  природные газы содержат наряду с углеводородами азот, углекислоту, сероводород, гелий, аргон, пары воды, капельную пресную и минерализованную воду, а также механические примеси — частицы породы и тампонажного цемента. Нередко с газом длительное время выносятся из пласта ингредиенты бурового раствора, проникшего в коллектор в процессе бурения скважины.

Требования, предъявляемые к качеству природного газа, зависят от его назначения [32].

Рис. 4.7. Сепаратор с предварительным  отбором газа и  жалюзийными насадками:

1 — подводящий трубопровод; 2 — вилка для предварительного отбора газа; 3 — каплеуловитель; 4 — жалюзийные насадки; 5 — газопровод с регулятором давления; 6 — предохранительный клапан; 7 — корпус сепаратора; 8 — поплавок; 9 — пеногаситель; 10 — наклонные полки; 11 — диффузор


Природный газ, поступающий в ЕСГ, должен содержать  не более 2 г сероводорода на 100 м3 (при стандартных условиях) . Точка росы должна быть ниже температуры в газопроводе. Наиболее детально разработаны нормы содержания в природном газе паров воды. Согласно отраслевым стандартам, природный газ надо осушать в зависимости от времени года, климатического пояса, в котором проложен газопровод, и максимального давления в нем. Ниже приведены основные требования к степени осушки природного газа.

Степень осушки природного газа  
Район............................................. Севера Средней полосы
Точка росы, °С............................ -25 -10                   -5
Время действия показателя...... Круглогодично 01.10-31.03     01.04-30.09

Несоблюдение  требований, предъявляемых к качеству природного газа, приводит к порче оборудования, к большому перерасходу средств, а иногда и к авариям, убыток от которых не всегда поддается точному учету.

Необходимо  отметить, что некоторые компоненты природного газа в зависимости от конкретных условий могут переходить из категории вредных примесей в разряд ценных ингредиентов.

Выбор системы сбора зависит от запасов и состава газа, от формы залежи, размещения и продуктивности скважин, пластового давления и многих других факторов. При выборе системы сбора и подготовки газа следует учитывать также, что со временем давление в залежи будет снижаться, состав газа и конденсата изменяться, а отбор газа из залежи постепенно нарастать и в разработку будут вводиться новые пласты. Поэтому на газовых промыслах не встречается одинаковых систем сбора, однако разработаны системы сбора и подготовки газа, типичные для определенных условий (рис. 4.8).

Существуют  следующие системы сбора газа: линейная, лучевая, кольцевая, групповая [7].

Линейная  система применяется на вытянутых  газовых месторождениях, не имеющих большого народнохозяйственного значения. Ее достоинство — простота и небольшие капитальные затраты. К недостаткам можно отнести неудобство обслуживания и применения устройств автоматического регулирования, трудности индивидуальной регулировки работы скважин, малую надежность системы.

Лучевая система предполагает подключение скважин к газосборному пункту по индивидуальным шлейфам. Основное ее достоинство по сравнению с другими системами — надежность, удобство регулировки режима скважин, возможность автоматизации. Лучевые системы типичны для небольших газовых месторождений, приуроченных к брахиантиклинальным складкам.

Рис. 4.8. Системы сбора  газа:

а — линейная; б — лучевая; в — кольцевая; г — групповая


Кольцевая система характеризу-ется более  высокой, чем линейная, надежностью  сбора газа и пониженной металлоемкостью [36].

При линейной и кольцевой системах сбора газа обычно предусматривают установку  около скважины сепараторов, метаноль-ных  емкостей, расходомеров. Обслуживание их вызывает большие затруднения, особенно в условиях заболоченной местности и сурового климата.

Многих  из этих недостатков лишена групповая  система. В этой системе газ и  конденсат из скважин по индивидуальным шлейфам поступают на пункты промыслового сбора газа (ППСГ) или установки  комплексной подготовки газа (УКПГ), где происходит очистка и частичная осушка газа, регулировка расхода, учет добываемой продукции.

К основным достоинствам этой системы относятся  независимость контроля и регулировки работы отдельных скважин, возможность полной автоматизации процессов, высокая надежность работы установок, относительно простое решение проблемы борьбы с гидратами. При групповой системе значительно упрощаются промышленная канализация, тепло- и энергоснабжение, ремонт оборудования, ревизия его состояния, облегчаются организация строительных и монтажных работ и их индустриализация.

Эти преимущества способствовали тому, что, несмотря на несколько повышенные по сравнению  с более простыми системами капитальные вложения, групповая система сбора и подготовки газа получила наибольшее развитие на современных газовых и газоконденсатных промыслах, таких как Медвежье, Вуктыл, Оренбург и др.

К одному газосборному пункту (ГП) или УКПГ подключаются от 10 до 30 скважин. Число ГП зависит от размеров залежи, обычно оно составляет 5-10, но может достигать 20-25.

По месту  подготовки газа к транспорту различают  централизованную и децентрализованную системы. При централизованной системе на отдельных ГП, ППСГ предусматривается частичная подготовка газа. До окончательной кондиции газ доводится на центральном пункте сбора и подготовки, обычно расположенном в начале магистрального газопровода, называемом головным сооружением. При децентрализованной системе подготовки предполагается окончательная подготовка газа на каждом газосборном пункте УКПГ. Децентрализованная система типична для газоконденсатных промыслов с залежами, богатыми тяжелыми углеводородами.

Рис. 4.9. Гравитационный односекционный сепаратор  при рабочем давлении:

1,2 — выходной и входной патрубки; 3 — люк; 4 — патрубок для продувки сепаратора


4.6. ОЧИСТКА ГАЗА ОТ МЕХАНИЧЕСКИХ  ПРИМЕСЕЙ

Очистка газа по пути его следования от месторождения  до потребителя производится в несколько  ступеней. Первая ступень — установка внутрискважинного фильтра для ограничения выноса породы призабойной зоны [39, 41]. Вторую ступень очистки газ проходит на промысле в наземных сепараторах, в которых сепарируется жидкость (вода и конденсат) и газ очищается от частиц породы и пыли.

Промысловые аппараты работают по принципу выпадения взвеси под действием силы тяжести при уменьшении скорости потока газа или по принципу использования действия центробежных сил при специальной закрутке потока. Поэтому промысловые аппараты очистки делятся на гравитационные и циклонные. Гравитационные аппараты, в свою очередь, подразделяются на вертикальные и горизонтальные. Вертикальные гравитационные сепараторы рекомендуют для очистки газов, содержащих твердые частицы и тяжелые смолистые фракции, так как они имеют лучшие условия очистки и дренажа.

На рис. 4.9 изображен гравитационный односекционный сепаратор. Он имеет тангенциальный подвод газа (скорость в нем достигает 15-20 м/с), что способствует выпадению в сепараторе твердой взвеси и капельной влаги. В основном он работает по принципу выпадения взвеси при малых скоростях восходящего потока газа. Опыт эксплуатации показал, что скорость газа на выходе из сепаратора не должна превышать 0,1 м/с при давлении б МПа.

Вертикальные  сепараторы изготовляют диаметром 400—1650 мм, горизонтальные — диаметрами 400— 1500 мм при максимальном давлении 16 МПа. При оптимальной скорости газа эффективность сепарации достигает 70 — 80 %. В связи с большой металлоемкостью и недостаточной эффективностью гравитационные сепараторы применяют редко.

Рис. 4.10. Схема движения газов в циклоне:

/ —  выход  газа; II — вход газа; III — удаление продуктов очистки


На рис. 4.10 схематически изображена работа циклонного сепаратора. Корпус циклона и патрубок для выхода газа образуют внутреннее кольцевое пространство. В нижней части имеется отверстие для отвода осадка из циклона. При тангенциальном вводе газ в сепараторе приобретает в кольцевом пространстве и конусе вращательное движение, вследствие чего из газа выпадают механические взвеси (твердые и жидкие) и опускаются в сборный бункер. Газ с уменьшенной скоростью выходит через верхний патрубок.

Третья  ступень очистки газа производится на линейной части газопровода и компрессорных станциях. На линейной части устанавливают конденсатосборники, так как в результате несовершенной сепарации на промысле газ может иметь жидкую фазу.

Наибольшее  распространение получил конденсатосборник типа «расширительная камера» (рис. 4.11). Принцип ее работы основан на выпадении из потока газа капелек жидкости под действием силы тяжести из-за местного снижения скорости потока при увеличении диаметра трубопровода.

При эксплуатации газопроводов с системой «расширительных камер» возникают затруднения, связанные с пропуском устройств для очистки внутренней полости трубопровода. Для этого необходимо предусматривать специальные направляющие для беспрепятственного прохождения через них очистного устройства. Для очистки газа от механических примесей на отечественных газопроводах применяют установки с масляными пылеуловителями (рис. 4.12). 
 

Рис. 4.11. Конденсатосборник типа «расширительная камера»:
1 — газопровод; 2 — расширительная камера; 3 — ребра жесткости; 4 — конденсатоотводная трубка

Информация о работе Промысловый сбор и подготовка нефти и газа к транспорту