Промысловый сбор и подготовка нефти и газа к транспорту

Автор: Пользователь скрыл имя, 13 Мая 2012 в 23:41, курс лекций

Описание работы

Нефть, газ и вода от устьев скважин, рассредоточенных по площади месторождения, направляются по выкидным ли¬ниям в систему сбора и транспортирования

Работа содержит 1 файл

Система сбора и подготовка нефти и газа.doc

— 1.28 Мб (Скачать)

 
Рис. 4.12. Схема установки  пылеуловителей

Природный газ Г, пройдя пылеуловители 1, направляется в компрессорный цех. Пылеуловители заполнены маслом. По мере загрязнения масло МЗ (загрязненное масло) передавливается из пылеуловителей 1 в отстойники 7. Свежее масло (МС) поступает в пылеуловители самотеком из масляного аккумулятора 2. Предварительно в аккумуляторе и пылеуловителях выравнивается давление. В масляный аккумулятор масло подается насосом 3 из мерного бака 5 или из бака свежего масла 4. При этом аккумулятор отключают от пылеуловителей и находящийся в них газ выпускают в атмосферу. В мерный бак масло поступает самотеком из отстойников 7. Отбросное масло (МО) вместе со шламом, накапливающимся в нижней части отстойников, спускают в сборную емкость 6.

Вертикальный  масляный пылеуловитель (ПУ) представляет собой вертикальный стальной цилиндр  со сферическим днищем, рассчитанным на рабочее давление в газопроводе (рис. 4.13).

Диаметр пылеуловителя  составляет 1080 — 2400 мм. Внутри ПУ находятся  устройства, обеспечивающие контактирование  масла с газом и отделение  частиц масла от газа при выходе его из аппарата. Газ поступает в пылеуловитель через входной патрубок 7. Благодаря отбойному козырьку 8 газ меняет свое направление и движется к поверхности масла, находящегося в нижней части аппарата. Крупные посторонние частицы при этом сразу же выпадают и оседают на дно. Уровень масла устанавливается на расстоянии 25 — 30 мм от концов вертикальных трубок 3. При этом газ устремляется вверх, захватывая с собой частицы масла. В трубках 3, а далее в средней свободной части пылеуловителя газ интенсивно перемешивается с маслом, которое поглощает содержащиеся в газе частицы, а также поступающий вместе с газом конденсат тяжелых углеводородов.

 
Рис- 4.13. Вертикальный масляный пылеуловитель Рис. 4.14. Циклонный пылеуловитель  пропускной способностью 20 млн м3/ сут и рабочим давлением 7,5 МПа:

] — выходной патрубок для газа; 2 — входной патрубок; 3 — циклоны; 4 — люк; 5 — штуцеры контролирующих приборов; б — дренажный штуцер


При этом уровень масла повышается. По мере выхода газа из вертикальных трубок скорость его резко уменьшается. Более крупные частицы жидкости при этом выпадают и по дренажной трубке 4 стекают вниз. Из свободной средней части пылеуловителя газ и масляный туман поступают в его верхнюю часть, а оттуда в жалюзийное сепарационное устройство 1, в котором отбирается мелкозернистая взвесь. Очищенный газ выходит через патрубок 2. Загрязненное масло удаляется из поддона через дренажную трубку 5. Полная очистка пылеуловителя производится 3 — 4 раза в год через люк 6. Количество заливаемого масла в пылеуловитель диаметром 2400 мм не превышает 1,5 — 2,0 м3. Чтобы обеспечить нормальную работу пылеуловителей, необходимо поддерживать постоянный уровень масла. Пропускная способность вертикальных масляных пылеуловителей при заданном давлении ограничивается скоростью потока газа в контактных трубках, которая не должна превышать 1 — 3 м/с.

Преимущество  вертикального масляного пылеуловителя по сравнению с другими конструкциями пылеуловителей заключается в высокой степени очистки (общий коэффициент очистки достигает 97 — 98 %); к недостаткам относятся большая металлоемкость, наличие жидкости и ее унос (допускается не более 25 г на 1000 м3 газа), большое гидравлическое сопротивление (0,0350-0,05 МПа), чувствительность к изменению уровня жидкости и др.

На компрессорных  станциях для очистки газа применяются также циклонные пылеуловители. Циклонный пылеуловитель (рис. 4.14) представляет собой сосуд цилиндрической формы с встроенными в него циклонами. Газ поступает через боковой верхний патрубок в распределитель, к которому приварены своими входными патрубками звездообразно расположенные циклоны, неподвижно закрепленные на нижней решетке. Отсепарированная жидкость и твердые частицы по дренажному конусу циклона попадают в отстойник. Для автоматического удаления собранного шлама предусмотрен дренажный штуцер. Качество очистки повышается с уменьшением диаметра циклона. Поэтому созданы батарейные циклоны, объединяющие в своем корпусе группу циклонов малого диаметра. Закручивание потока происходит в циклонах типа «розетка» и «улитка» (рис. 4.15).

При работе по системе газ — твердая взвесь пропускную способность батарейных циклонов обычно рассчитывают, исходя из допустимых скоростей газа, обеспечивающих достаточно полное удаление твердой взвеси из газового потока. При большом расходе газа наблюдается чрезмерный эрозионный вынос и повышенный перепад давления газа. Эффективность очистки газа батарейными циклонами колеблется в пределах 85 — 98 % и уменьшается с увеличением его пропускной способности. 

При работе по системе газ — твердая взвесь пропускную способность батарейных циклонов обычно рассчитывают, исходя из допустимых скоростей газа, обеспечивающих достаточно полное удаление твердой взвеси из газового потока. При большом расходе газа наблюдается чрезмерный эрозионный вынос и повышенный перепад давления газа. Эффективность очистки газа батарейными циклонами колеблется в пределах 85 — 98 % и уменьшается с увеличением его пропускной способности.

В настоящее  время широко применяются циклонные  пылеуловители диаметром 1600 мм на рабочее давление до 7,36 МПа.

4.7. МЕТОДЫ ПРЕДУПРЕЖДЕНИЯ ОБРАЗОВАНИЯ  ГИДРАТОВ

Природные газы в определенных термодинамических  условиях вступают в соединение с водой, образуя гидраты, которые, скапливаясь в промысловых и магистральных газопроводах, существенно увеличивают их гидравлическое сопротивление и, следовательно, снижают пропускную способность. Особое значение проблема борьбы с образованием гидратов приобретает при разработке месторождений Западной Сибири и Крайнего Севера. Низкие пластовые температуры и суровые климатические условия этих районов создают благоприятные условия для образования гидратов в скважинах и газопроводах [14].

Гидраты представляют собой соединения молекулярного  типа, возникающие за счет действия ван-дер-ваальсовых сил притяжения. Молекулы воды при образовании гидратов как бы раздвигаются молекулами газа. Образующиеся при этом полости между молекулами воды полностью или частично заполняются молекулами газа. Гидраты природных газов представляют собой неустойчивые соединения, которые при повышении температуры или понижении давления разлагаются на газ и воду. По внешнему виду — это белая кристаллическая масса, похожая на снег или лед. Если природные газы содержат кислые примеси, то процесс гидратообразования ускоряется.

Процесс гидратообразования обычно происходит на границе газ — вода при условии полного насыщения природного газа водой. Для прогнозирования места образования и интенсивности накопления гидратов в системах газоснабжения необходимо знать изменение влажности газа в различных термодинамических условиях.

На практике часто пользуются абсолютной влажностью, выраженной массой паров воды в единице  объема газа, приведенной к нормальным условиям (273 К и 0,1013 МПа). Относительная влажность — это выраженное в процентах или в долях единицы отношение количества водяных паров, содержащихся в газовой смеси, к количеству водяных паров в том же объеме и при тех же температуре и давлении при полном насыщении. Температура, при которой газ становится насыщенным при данных давлении и влажности, называется точкой росы.

Для того чтобы в газопроводах не образовывались гидраты, влажность подаваемого в него газа не должна превышать минимального значения. Это условие является основным при проектировании установок осушки газа перед подачей его в газопровод.

Существуют  следующие методы борьбы с образованием гидратов в газопроводах: подогрев газа; снижение давления газа; введение ингибиторов в поток газа; осушка газа.

Предупреждение  образования гидратов методом подогрева газа заключается в том, что при сохранении давления в газопроводе температура газа поддерживается выше равновесной температуры гидратов. В условиях транспорта газа по магистральному газопроводу этот метод неприменим, так как связан с большими затратами энергии. Как показывают расчеты, при больших объемах транспортируемого газа целесообразнее его охлаждать, поскольку это позволит заметно увеличить пропускную способность газопроводов, особенно крупных газопроводов с большим числом компрессорных станций. Метод подогрева газа применяется на газораспределительных станциях, где при больших перепадах давления вследствие дроссельного эффекта температура газа может значительно снижаться, в результате чего обмерзает редуцирующая аппаратура (клапаны, краны, диафрагмы).

Предупреждение  образования гидратов снижением  давления заключается в том, что при сохранении температуры в газопроводе уменьшают давление до значения ниже равновесного давления образования гидратов. Этот метод применяется для ликвидации образовавшихся гидратных пробок. Пробки ликвидируют путем выпуска газа в атмосферу через продувочные свечи. После снижения давления необходимо некоторое время (от нескольких минут до нескольких часов) для разложения гидратов. Очевидно, что данный метод пригоден только для ликвидации гидратных пробок при положительных температурах. В противном случае гидратная пробка перейдет в ледяную. Поскольку минимальная температура газа в газопроводе близка к нулю, а равновесное давление при этом находится в пределах 1 — 1,5 МПа, применение этого метода оказывается неэффективным для предупреждения образования гидратов в магистральных газопроводах. Это связано также с тем, что оптимальное давление транспортируемого газа составляет 5 — 7 МПа. Метод снижения давления применяется в аварийных ситуациях для разложения гидратов в газопроводе в сочетании с ингибиторами, так как в противном случае гидраты образуются вновь.

Введение  в поток газа ингибиторов приводит к тому, что водяные пары газа частично поглощаются ими и переводятся  вместе со свободной водой в водный раствор, который совсем не образует гидратов или образует их при более низких температурах. В качестве ингибиторов применяются метанол (метиловый спирт), растворы этиленгликоля (ЭГ), диэтиленг-ликоля (ДЭГ), триэтиленгликоля (ТЭГ), хлористого кальция, этилкарбоната и др.

Для уменьшения расхода метанола необходимо вводить  его в начале зоны возможного гидратообразования в газопроводе. Экономически выгодно  метанол применять при небольших  расходах газа, когда из-за высоких  капиталовложений нерационально использовать другие методы. Метанол можно вводить в сочетании с другими средствами, например с осушкой газа или с понижением давления. Использование метанола для предупреждения образования гидратов в газопроводе при больших объемах транспортируемого газа экономически невыгодно. Ввод ингибиторов в газовый поток широко применяют на промыслах для предупреждения образования гидратов в сепараторах, теплообменниках и других дегидраторных аппаратах, а также в скважинах. При этом предпочтение следует отдать диэтиленгликолю, так как возможность его регенерации и сравнительно небольшие потери в большинстве случаев делают этот ингибитор наиболее экономичным.

Осушка  газа является наиболее эффективным  и экономичным способом предупреждения образования кристаллогидратов в магистральных газопроводах при больших объемах транспортируемого газа. При промысловой подготовке газа к дальнему транспорту его осушают сорбционным способом или охлаждением газового потока. В результате осушки точка росы паров воды должна быть снижена ниже минимальной температуры при транспортировке газа. Влажность газа должна составлять не более 0,05 — 0,1 г/м3.

4.8. СОРБЦИОННЫЕ МЕТОДЫ ОСУШКИ ГАЗА

4.8.1. ОСУШКА ГАЗА АБСОРБЕНТАМИ

      Абсорбенты  — жидкие сорбенты, применяемые для осушки природных и нефтяных газов. Они должны иметь высокую растворимость в воде, низкую агрессивность, стабильность по отношению к газовым компонентам, простоту регенерации, малую вязкость, низкую упругость паров при температуре контакта, слабое поглощение углеводородных компонентов газа, пониженную способность к образованию пены или эмульсий. Большинству этих требований отвечает диэтиленгликоль, триэтиленгликоль и в меньшей степени этиленгликоль [36, 37, 38].

Диэтиленгликоль получают реакцией соединения двух молекул ЭГ с образованием молекулы воды. В химически чистом виде это бесцветная жидкость с молекулярной массой 106,12, относительной плотностью (по воде) 1,117 и температурой кипения 518 К при р = 0,1013 МПа.

Как показали эксперименты в лабораторных и промышленных условиях, максимальное понижение точки росы газа при осушке ДЭГ обычно не превышает 308 К, что довольно часто оказывается недостаточным. В связи с разработкой газовых месторождений с высокой пластовой температурой газа потребовался более сильный поглотитель влаги — ТЭГ. Его получают соединением трех молекул ЭГ с образованием воды. Молекулярная масса ТЭГ 150,17, относительная плотность (по воде) 1,1254 и температура кипения 560,4К при р = 0,1013 МПа.

Гликоли хорошо отбирают влагу из газов в большом интервале концентраций. Вследствие низкой упругости паров потери поглотителя незначительные: 5—18и2 — 4гна 1000 м3 газа для ДЭГ и ТЭГ соответственно. Температура кипения и упругость паров воды и гликолей сильно различаются, что облегчает регенерацию поглотителя, а небольшая вязкость поглотителя облегчает работу циркуляционных насосов. Обводненные гликоли неагрессивны в коррозионном отношении. Растворимость природного газа в них незначительная: при давлении до 15 МПа она не превышает 6 г на 1 л гликоля. При атмосферном давлении ДЭГ начинает распадаться при 437 К, а ТЭГ — при 478 К. В соответствии с этим в производственных условиях степень их регенерации может достигать 96 — 99 %. ТЭГ имеет склонность к пенообразованию, для борьбы с этим применяют различные присадки, например моноэтаноламин. Интенсивность процесса осушки газа гликолями находится в прямой зависимости от давления, температуры контакта газ — сорбент и концентрации сорбента.

В газе при повышенном давлении уменьшается содержание влаги, что, естественно, приводит к снижению количества циркулирующего раствора сорбента, необходимого для осушки газа до заданной точки росы. Увеличение температуры контакта газ — сорбент приводит к росту парциального давления водяных паров над сорбентом, снижению поглотительной способности последнего и повышению точки росы осушенного газа. Уменьшение температуры контакта газ — сорбент оказывает обратное действие, т.е. снижает точку росы осушенного газа. Однако при осушке газа жидкими сорбентами не рекомендуется применять температуру ниже 303 К в связи с повышением вязкости сорбентов и значительной трудностью их перекачки. Кроме того, при увеличении вязкости сорбента одновременно несколько снижается его поглотительная способность.

Информация о работе Промысловый сбор и подготовка нефти и газа к транспорту