Физическое описание явления фильтрации жидкости

Автор: Пользователь скрыл имя, 17 Октября 2012 в 13:53, курсовая работа

Описание работы

Фильтрация представляет собой движение жидкости в пористой среде под действием перепада давления. Основной характеристикой фильтрационного движения является вектор скорости фильтрации u определяемый следующим образом. Выберем точку М пористой среды и проведем через нее элементарную площадку S. Через выделенную площадку в единицу времени протекает масса жидкости Q. Тогда проекция вектора u на нормаль к выделенной площадке равна lim Δ Q/(p S), где p – плотность жидкости. Подчеркнем, что масса жидкости делится на полную площадь S, а не на ее часть, занятую порами.

Работа содержит 1 файл

заказ 862а, вар. 9.doc

— 553.00 Кб (Скачать)

Согласно элементарной кинетической теории газов, вязкость газа не должна зависеть от давления. Это  утверждение также не применимо  к условиям, характерным для газового пласта. При фиксированной температуре вязкость газа может изменяться на десятки процентов при изменении давления на десятки атмосфер.

2. Рассмотрим теперь  вопрос, как зависят от давления  жидкости свойства пористой среды  - ее пористость m и проницаемость  k. Обе эти величины характеризуют  структуру порового пространства, и их изменение в любой точке определяется давлением жидкости и тензором напряжений, действующих в скелете пористой среды. При этом следует отметить, что в опытах определяется их зависимость не от истинных напряжений, действующих в скелете, а от некоторой их части, которую мы назовем фиктивными напряжениями. Для выяснения этого обстоятельства разберем следующую элементарную схему опыта. Пусть в цилиндрическом сосуде с площадью поперечного сечения, равной единице, находится некоторый объем пористой среды, в котором содержится жидкость под давлением p. На верхней грани этого объема лежит непроницаемый поршень, по другую сторону которого находится жидкость под тем же давлением p. В силу известного принципа гидростатики - принципа отвердевания - эта система находится в состоянии равновесия. Для выяснения зависимости пористости от нагрузки приложим к поршню дополнительную нагрузку q. Вычислим сжимающее нормальное напряжение, действующее в сечении объема пористой среды плоскостью, параллельной поршню; для этого составим уравнение равновесия части рассматриваемого объёма, ограниченной поршнем и плоскостью сечения. Пренебрегая силами трения о стенки вмещающего сосуда и собственным весом среды и жидкости, получаем

 

s+mp=q+p;  s = q+p(1-m), (14)

 

где s - истинное напряжение, действующее в пористой среде (в расчете на единицу площади общего сечения) и, очевидно, не равное приложенной нагрузке q. Изменение пористости в зависимости от давления при фиксированной нагрузке в целом мало существенное, учитывается отдельно (это изменение обусловливается сжимаемостью материала зерен, составляющих пористую среду, которая мала сравнительно со сжимаемостью пористой среды в целом, так как изменение пористости происходит в основном за счет более плотной упаковки зерен и лишь в очень небольшой мере - за счет их сжатия; если вообще не учитывать сжимаемость материала зерен, составляющих пористую среду, то пористость при фиксированной нагрузке не будет зависеть от давления жидкости). Можно показать также, что при фиксированных напряжениях s изменение давления жидкости вообще не будет приводить к изменению объема скелета, независимо от того, какова сжимаемость его материала. Таким образом, рассматриваемый опыт дает нам зависимость пористости от нагрузки q, составляющей лишь часть истинных напряжений, действующих в скелете пористой среды:

 

q=sf = s-p(1-m). (15)

 

 Величину s будем в дальнейшем называть фиктивным напряжением.

Важная особенность  пористой среды, отмеченная выше, заключается в том, что изменения занятого ею объема могут происходить при весьма малых изменениях собственного объема твердого скелета, почти исключительно за счет его перестройки. Простейшей моделью подобной системы может служить пружина, погруженная в воду. Объем цилиндрического тела, ограниченного пружиной, практически не изменяется при изменении давления жидкости и может сильно измениться, если приложить по концам противоположно направленные силы. В формулу для вычисления осадки пружины следует подставлять величину истинных напряжений за вычетом слагаемого, обусловленного давлением жидкости.

Аналогичные соображения  применимы и в более общих  случаях. Таким образом, опыт, поставленный в условиях произвольного нагружения, даст нам зависимость пористости не от тензора истинных напряжений, действующих в скелете пористой среды, а от тензора фиктивных напряжений. Ввиду того что при действии на пористую среду одного гидростатического касательные напряжения в пористой среде не возникают, касательные компоненты тензора истинных напряжений и тензора фиктивных напряжений и тензора совпадают, а нормальные компоненты отличаются на величину р(1-m), имеем

 

(i, j=1, 2, 3,…) (16)


 

где   компоненты тензора фиктивных напряжений;     компоненты тензора истинных напряжений; δij=1 при j=i, δij=0 при i?j,


Будучи величинами скалярными, пористость и проницаемость могут зависеть только от инвариантов тензора фиктивных напряжений. Зависимостью их от второго и третьего инвариантов тензорафиктивных напряжений пренебрегают, откуда


(17)

 

где ==- главные нормальные фиктивные напряжения, аq среднее напряжение.

Величину q можно связать с давлением р, если рассматривать напряженные состояние в пласте. Пусть Н - глубина залегания пласта, h-его мощность, а r0 - средняя плотность горных пород. Обыкновенно нефтяные пласты располагаются на значительной глубине под дневной поверхностью и их мощность мала сравнительно с глубиной залегания, т. е. h<<H. В этом случае удается связать изменение величины q с изменением давления р. В самом деле, лежащие над пластом горные породы поддерживаются скелетом пласта и насыщающей пласт жидкостью, так что вес вышележащих горных пород уравновешивается системой напряжений в пористой среде и гидродинамическим давлением жидкости. Составляющую пласт системы жидкость - пористая среда можно представить себе как некоторую деформированную систему, касательные напряжения в которой совпадают с касательными напряжениями в пористой среде, а нормальные напряжения равны сумме истинных нормальных напряжений, действующих в пористой среде, и доли нормальных напряжений, воспринимаемых жидкостью (эта доля равняется, очевидно, произведению пористости на давление жидкости). Имеем, таким образом, выражение для компонента суммарного напряжения δij:

 

(18)


 

Пусть р- суммарная плотность  системы жидкость - пористая среда, а gi - компонента вектора ускорения силы тяжести по оси хi. Тогда уравнение равновесия системы жидкость - пористая среда имеет вид:


(19)

 

Считая жидкость слабосжимаемой, можно положить в уравнении (19) р=р*, где р* - постоянное исходное значение суммарной плотности. Таким образом, суммарное уравнение равновесия системы жидкость - пористая среда окончательно записывается в виде:


(20)

 

и, как видно, это уравнение  не зависит от времени. Покажем теперь, что и суммарные напряжения на кровле и подошве пласта (т. е. на верхней и нижней ограничивающих пласт поверхностях) можно с большой степени точности считать постоянными. Физически объяснения этого факта сводится к следующему: упругое смещение, обусловливаемое изменением давления жидкости, насыщающей породу пласта, пропорциональное, очевидно, мощности пласта, распределяется на всю огромную толщину Н вышележащего массива горных пород, так что соответствующие относительные деформации в этом массиве малы и, следовательно, малы возникающие в нем дополнительные напряжения, в частности дополнительные напряжения на кровле и подошве пласта.

 Поясним это несколько подробнее. Предположим, что давление жидкости, насыщающей пласт, изменилось по сравнению  с исходным моментом на величину dр. Обозначим величину изменения давления жидкости в том месте, где оно максимально, через  dр макс. Для поддержания вышележащих горных пород необходимо, чтобы напряжение в скелете пористой среды внутри пласта изменилось также на величину порядка  dр. Соответствующая относительная деформация в пласте составило величину порядка  dр/Е, где Е- некоторый эффективный модуль Юнга системы, а полное вертикальное смещение точки, например кровли пласта, - величину порядка v = hdр/Е, где h- мощность пласта. Заметим теперь, что, закрепив точки свободной поверхности, т. е. обеспечив на свободной поверхности равенство нулю упругих смещений, а также заменив во всех точках пласта  dр на  dрмакс, мы можем лишь увеличить возникающее дополнительные напряжения. Таким образом, если на свободной поверхности вышележащего массива смещение равно нулю, а на глубине Н оно имеет величину порядка vмакс=h dрмакс /Е, то, очевидно, соответствующее напряжение sмакс имеет величину порядка sмакс =vмакс Е/H. отношение этого дополнительного напряжения к действующему на глубине Н вертикальному напряжению сжатия, имеющему порядок  r0gH(r0 - cредняя плотность горных пород - величина, примерно равная 2,5 г/см3), равно по порядку величины


 

 (21)

 

Значение dрмакс/r0gH обычно не превышает одной-двух десятых; величина h/Н исчезающе мала, так что изменение напряжения во всем вышележащем массиве и, в частности, на его границах мало  сравнительно с исходным напряжением. Поэтому можно считать, что при изменении давления жидкости в пласте напряжения, действующие на кровле и подошве пласта, остаются постоянным.

Предыдущее рассуждение  существенно основано на том, что  модуль Юнга системы жидкость - пористая среда Е и модуль вышележащего массива горных пород Е1 имеют одинаковый порядок величины (что обычно имеет место в действительности). Если бы эти модули Юнга сильно отличались между собой, то выражение (21) содержало бы дополнительный множитель Е1/Е и при Е1>> Е отношение напряжений могло бы и не быть малым. Физически это означает, что в случае, когда вышележащая толща сложена из очень жестких пород, могут образоваться своды, и при изменении давления жидкости напряжения на кровле и подошве пласта будут меняться.

Есть теперь пренебречь влиянием таких границ области фильтрации, как стенки скважин (эти границы имеют сравнительно очень малую протяжность; их влияние будет оценено ниже), то из независимости от времени уравнений равновесия системы жидкость - пористая среда (20) и напряжений на кровле и подошве пласта следует важный вывод о независимости суммарного напряженного состояния в системе жидкость - пористая среда от времени, так что


 

Откуда (22)


 

Свертывая уравнения (22) (т. е. полагая i, j=1, 2, 3 и суммируя получающие уравнения), имеем


(23)

 

откуда вытекает важное соотношение


===

 

2. Основные  задачи нестационарной фильтрации

2.1. Уравнение неразрывности

 

 Рассмотрим баланс массы жидкости в произвольном элементе объема пористой среды V, ограниченном поверхностью S. За бесконечно малое время dt приток жидкости внутрь элемента равен согласно определению скорости фильтрации


 

(24)

 

(  единичный вектор нормали; за положительное направление нормали принято направление внешней нормали к поверхности; un - нормальная к поверхности составляющая скорости фильтрации). Приращение массы жидкости внутри этого элемента равняется



(25)

 

Приравнивая выражения (24) и (25) и используя формулу преобразования поверхностного интеграла в объёмный

 

 

находим


 

откуда в силу произвольности элемента V и вытекает уравнение неразрывности


(26)

 

2.2. Упругий режим фильтрации

 

 1. Самым простым и наиболее  изученным случаем нестационарной фильтрации является фильтрации слабосжимаемой жидкости в упругодеформируемом пласте (в технических приложениях эти задачи получили название задач упругого режима фильтрации). В основу исследования кладется система уравнений закона фильтрации и уравнения неразрывности:


(27)

 

Для того чтобы получить замкнутую  систему уравнений, нужно воспользоваться  тем, что свойства жидкости (плотность r и вязкость m), так же как и пористость и проницаемость пористой среды, являются функциями давления (мы предполагаем движение изотермическим).

 В силу (23) имеем


 

 

 исходя из предположения о слабой сжимаемости жидкости и пористой среды, можно считать относительные изменения величин r и m малыми и коэффициенты при dp/dt в предыдущих формулах постоянными:


(28)

 

Опытные данные показывают, что в реальных случаях 

 

(p-p0)/Кm <<1;  (p-p0)/Кr<<1 и т. д.

 

Подставляя второе уравнение (27) в  первое и преобразуя получающее соотношение с учетом (28), находим, пренебрегая малыми величинами,


 

Если dp - характерное изменение давления, а L - характерная длина, то первый член в скобках имеет, очевидно, порядок dp/L2, а второй (dp)2/L2К. Отсюда следует, что вторым членом в принятом приближении также следует пренебречь. Таким образом, имеем


(29)

 

где коэффициент


(30)

 

носит название коэффициента пьезопроводности. Уравнение (29) обычно называется уравнением упругого режима или, по предложению В.Н.Щелкачева, уравнением пьезопроводности. Оно совпадает с хорошо известным классическим уравнением теплопроводности.

2. Рассмотрим постановку  основных задач теории упругого  режима. Определим распределение давления р в некоторой замкнутой области пространства D на протяжении промежутка времени 0 £ t£ T. Из теории уравнения теплопроводности известно, что если задать на границе Г области D линейную комбинацию давления и его производной по нормали к границе области


(31)

и задать начальное распределение  давления в области D

 

p(x,y,z,0)=φ(x,y,z) (32)

Информация о работе Физическое описание явления фильтрации жидкости