Загрязнение продовольственного сырья и пищевых продуктов ксенобиотиками химического и биологического происхождения

Автор: Пользователь скрыл имя, 28 Февраля 2013 в 13:38, лекция

Описание работы

Охрана продуктов питания от чужеродных химических веществ — важная гигиеническая проблема
Пищевые продукты представляют собой сложные многокомпо-нентные системы, состоящие из сотен химических соединений. Эти соединения можно условно разделить на следующие три группы.

Работа содержит 1 файл

Биолог. безоп. ЛЕКЦИЯ 3.doc

— 226.00 Кб (Скачать)

По данным ФАО, допустимая суточная доза (ДСД) свинца составляет около 0,007 мг/кг массы тела, ПДК в питьевой воде — 0,05 мг/л.

Мероприятия по профилактике загрязнения свинцом пищевых продуктов должны включать государственный и ведомственный контроль за промышленными выбросами свинца в атмосферу, водоемы, почву. Необходимо снизить или полностью исключить применение тетраэтилсвинца в бензине, свинцовых стабилизаторах, изделиях из поливинилхлорида, красителях, упаковочных материалах. Немаловажное значение имеет гигиенический контроль за использованием луженой пищевой посуды, а также глазурованной керамической посуды, недоброкачественное изготовление которых ведет к загрязнению пищевых продуктов свинцом.

Кадмий. В природе в чистом виде не встречается, это сопутствующий продукт при рафинировании цинка и меди. Земная кора содержит около 0,05 мг/кг кадмия, морская вода — 0,3 мкг/кг.

Кадмий широко применяется  в различных отраслях промышленности в качестве компонента защитных гальванических покрытий при производстве пластмасс, полупроводников. В некоторых странах соли кадмия используются в ветеринарии как антигель-минтные и антисептические препараты. Фосфатные удобрения и навоз также содержат кадмий.

Все это определяет основные пути загрязнения окружающей среды, а следовательно, продовольственного сырья и пищевых продуктов. В нормальных геохимических регионах с относительно чистой экологией содержание кадмия в растительных продуктов составляет, мкг/кг: зерновые — 28-95; горох — 15-19; фасоль — 5-12; картофель — 12-50; капуста — 2-26; помидоры — 10-30; салат — 17-23; фрукты — 9-42; растительное масло — 10-50; сахар — 5-31; грибы — 100-500. В продуктах животного происхождения, в среднем, мкг/кг: молоко — 2,4; творог — 6; яйца — 23-250.

Установлено, что примерно 80 % кадмия поступает в организм человека с пищей, 20 % — через легкие из атмосферы и при курении.

С рационом взрослый человек  получает в сутки до 150 и более мкг кадмия на 1  кг массы тела. В одной сигарете содержится

1,5-2,0 мкг кадмия, поэтому его уровень в крови и почках у курящих в 1,5-2,0 раза выше по сравнению с некурящими.

92-94 % кадмия, попавшего  в организм с пищей, выводится с мочой, калом и желчью. Остальная часть находится в органах и тканях в ионной форме или в комплексе с низкомолекулярным белком — металлотионеином. В виде этого соединения кадмий не токсичен, поэтому синтез металлотионеина является защитной реакцией организма при поступлении небольших количеств кадмия. Здоровый организм человека содержит около 50 мг кадмия. Интересно отметить, что в организме новорожденных он отсутствует и появляется к 10 месяцу жизни. Кадмий, как и свинец, не является необходимым элементом для организма млекопитающих.

Попадая в организм в  больших дозах, кадмий проявляет  сильные токсические свойства. Главной мишенью биологического действия являются почки. Механизм токсического действия кадмия связан с блокадой сульфгидрильных групп белков. Кроме этого, он является антагонистом цинка, кобальта, селена, ингибируя активность ферментов, содержащих указанные металлы. Известна способность кадмия в больших дозах нарушать обмен железа и кальция. Все это приводит к возникновению широкого спектра заболеваний: гипертоническая болезнь, анемия, снижение иммунитета и др. Отмечены тератогенный, мутагенный и канцерогенный эффекты кадмия.

Допустимое суточное потребление (ДСП) кадмия составляет 70 мкг/сутки, ДСД — 1 мкг/кг массы тела. ПДК кадмия в питьевой воде — 0,01 мг/л. Концентрация кадмия в сточных водах, попадающих в водоемы, не должна превышать 0,1 мг/л. Учитывая ДСП кадмия, его содержание в 1 кг суточного набора продуктов не должно превышать 30-35 мкг.

Важное значение в профилактике интоксикации кадмием имеет правильное питание: преобладание в рационе растительных белков, богатое содержание серосодержащих аминокислот, аскорбиновой кислоты, железа, цинка, меди, селена, кальция. Необходимо профилактическое УФ-облучение в 1/8-1/4 биодоз. Целесообразно исключить из рациона продукты, богатые кадмием. Белки молока способствуют накоплению кадмия в организме и проявлению его токсических свойств.

При определении кадмия в пищевых продуктах необходимо учитывать его способность испаряться при температуре 500 °С в условиях озоления. Поэтому минерализацию проводят в серной кислоте с добавлением перекиси водорода. В качестве основного

метода используют атомно-адсорбционную  спектрофотометрию. Перспективным направлением является полярографический анализ.


Мышьяк. Природный мышьяк находится в элементном состоянии, в виде арсенидов и арсеносульфидов тяжелых металлов. Содержится во всех объектах биосферы: морской воде — около 5 мкг/кг, земной коре — 2 мг/кг, рыбах и ракообразных — в наибольших количествах. Фоновый уровень мышьяка в продуктах питания из нормальных геохимических регионов составляет в среднем 0,5-1 мг/кг: в овощах и фруктах — 0,01-0,2, зерновых — 0,006-1,2, говядине и свинине — 0,005-0,05, яйцах — 0,003-0,03, коровьем молоке и кисломолочных продуктах — 0,005-0,01, твороге — 0,003-0,03 мг/кг. Высокая концентрация мышьяка, как и других химических элементов, отмечается в печени, пищевых гидробионтах, в частности морских. В организме человека обнаруживается около 1,8 мг мышьяка.

По данным экспертов  ФАО/ВОЗ, суточное поступление мышьяка в организм взрослого человека составляет в среднем 0,05-0,42 мг, т. е. около 0,007 мг/кг массы тела, и может достигать 1 мг в зависимости от его содержания в потребляемых продуктах питания и проникновения из других объектов окружающей среды. ФАО/ВОЗ установила ДСД мышьяка 0,05 мг/кг массы тела, что составляет для взрослого человека около 3 мг/сутки.

Мышьяк, в зависимости  от дозы, может вызывать острое и  хроническое отравление. Хроническая интоксикация возникает при длительном употреблении питьевой воды с 0,3-2,2 мг/л мышьяка. Разовая доза мышьяка в 30 мг смертельна для человека. Механизм токсического действия мышьяка связан с блокированием тиоловых групп ферментов, контролирующих тканевое дыхание, деление клеток, другие жизненно важные функции. Специфическими симптомами интоксикации считают утолщение рогового слоя кожи ладоней и подошв. Неорганические соединения мышьяка более токсичны, чем органические. После ртути мышьяк является вторым по токсичности контаминантом пищевых продуктов. Соединения мышьяка хорошо всасываются в пищевом тракте. 90 % поступившего в организм мышьяка выделяется с мочой. Биологическая ПДК мышьяка в моче равна 1 мг/л, а концентрация 2-4 мг/л свидетельствует об интоксикации. В организме он накапливается в эктодер-мальных тканях — волосах, ногтях, коже, что учитывается при биологическом мониторинге. Биологический период полужизни мышьяка в организме — 30-60 часов. Необходимость мышьяка для жиз-

недеятельности организма  человека не доказана, за исключением его стимулирующего действия на процесс кроветворения. Терапевтические свойства мышьяка известны более 2000 лет.

Загрязнение продуктов  питания мышьяком обусловлено его  использованием в сельском хозяйстве в качестве родентицидов, инсектицидов, фунгицидов, древесных консервантов, стерилизатора почвы. Мышьяк находит применение в производстве полупроводников, стекла, красителей.

Бесконтрольное использование  мышьяка и его соединений приводит к его накоплению в продовольственном сырье и пищевых продуктах, что обусловливает риск возможных интоксикаций и определяет пути профилактики.

Ртуть. Один из самых опасных и высокотоксичных элементов, обладающий способностью накапливаться в организме растений, животных и человека. В природе ртуть находится в трех окисленных состояниях: металлическая — Hg(0); одновалентный ион, состоящий из двух ядер, соединенных ковалентной связью, — (Нд-Нд)2+; двухвалентный ион — Нд2+.

Благодаря своим физико-химическим свойствам — растворимости, летучести — ртуть и ее соединения широко распространены в природе. В земной коре ее содержание составляет 0,5 мг/кг, морской воде — около 0,03 мкг/кг. В организме взрослого человека — около 13 мг, однако необходимость ее для процессов жизнедеятельности не доказана.

Распределение и миграция ртути в окружающей среде осуществляются в виде круговорота двух типов:

  • перенос паров элементной ртути от наземных источников в мировой океан;
  • циркуляция соединений ртути, образуемых в процессе жизнедеятельности бактерий.

Загрязнение пищевых продуктов  ртутью может происходить в результате:

  • естественного процесса испарения из земной коры в количестве 25-125 тыс. т ежегодно;
  • использования ртути в народном хозяйстве — производство хлора и щелочей, амальгамная металлургия, электротехническая промышленность, медицина и стоматология, сельское хозяйство, например, применение каломели (НдСУ в качестве антисептика, раствора сулемы (НдС^) — для дезинфекции, ртутной серной мази — при кожных заболеваниях, фун гицидов (алкированные соединения ртути) — для протравливания семян.

Второй тип круговорота, связанный с метилированием неорганической ртути, является наиболее опасным, поскольку приводит к образованию метилртути, диметилртути, других высокотоксичных соединений, поступающих в пищевые цепи. Метилирование ртути осуществляют аэробные и анаэробные микробы, а также микроми-цеты, обитающие в почве, в верхнем слое донных отложений водоемов. Предполагают, что метилирование ртути микроорганизмами может осуществляться при определенных условиях в кишечнике животных и человека.

Фоновое содержание ртути  в съедобных частях сельскохозяйственных растений составляет от 2 до 20 мкг/кг, редко до 50-200 мкг/кг. Среднее содержание в овощах — 3-59, фруктах — 10-124, бобовых — 8-16, зерновых — 10-103 мкг/кг. Наибольшая концентрация ртути обнаружена в шляпочных грибах — 6-447 мкг/кг, в перезрелых — до 2000 мкг/кг. В отличие от растений, в грибах может синтезироваться метилртуть.

Фоновое содержание в продуктах  животноводства составляет, мкг/кг: мясо — 6-20, печень — 20-35, почки — 20-70, молоко — 2-12, коровье масло — 2-5, яйца — 2-15. С увеличением количества ртути в корме и питьевой воде ее концентрация в органах и тканях существенно возрастает.

Мясо рыбы отличается наибольшей концентрацией ртути и ее соединений, которые активно аккумулируются в организме из воды и корма, содержащих другие гидробионты, богатые ртутью. В мясе хищных пресноводных рыб уровень ртути составляет 107-509 мкг/кг, нехищных — 79-200 мкг/кг, океанских -— 300-600 мкг/кг. Организм рыб способен синтезировать метилртуть, которая накапливается в печени при достаточном содержании в корме цианкоба-ламина (витамина В12). У некоторых видов рыб в мышцах содержится белок металлотионеин, с которым ртуть и другие металлы образуют комплексные соединения и накапливаются в организме. У таких рыб содержание ртути достигает 500-20000 мкг/кг (рыба-сабля) или 5000-14000 мкг/кг (тихоокеанский марлин). При загрязнении рек, морей и океанов ртутью ее уровень в гидробионтах намного увеличивается и становится опасным для здоровья человека.

При варке рыбы и мяса концентрация ртути в них снижается, при аналогичной обработке грибов — остается без изменений. Это различие объясняется тем, что в грибах ртуть связана с аминогруп-

пами азотсодержащих соединений, в рыбе и мясе — с серосодержащими аминокислотами.

Токсичность ртути зависит  от вида ее соединений, которые по-разному всасываются, метаболизируются и выводятся из организма. Наиболее токсичны алкилртутные соединения с короткой цепью — метилртуть и этилртуть. Резорбция неорганических соединений в пищеварительном канале составляет 2-15%, органических — 50-95 %. Неорганические соединения выделяются преимущественно с мочой, органические — с желчью и калом. Период полувыведения из организма неорганических соединений — 40 суток, органических — 76.

Механизм токсического действия ртути связывают с ее взаимодействием с SH-группами белков. Блокируя их, ртуть изменяет свойства или инактивирует ряд жизненно важных ферментов. Неорганические соединения ртути нарушают обмен аскорбиновой кислоты, пиридоксина, кальция, меди, цинка, селена, органические — обмен белков, цистеина, аскорбиновой кислоты, токоферолов, железа, меди, марганца, селена. Клиническая картина хронического отравления организма небольшими дозами ртути получила название микромеркуриализма.

Защитным эффектом при  воздействии ртути на организм человека обладают цинк и особенно селен. Предполагают, что защитное действие селена обусловлено образованием нетоксичного се-ленортутного комплекса за счет деметилирования ртути. Токсичность неорганических соединений ртути снижают аскорбиновая кислота и медь при их повышенном поступлении в организм, органических— протеины, цистин, токоферолы. Избыточное потребление с пищей пиридоксина усиливает токсичность ртути.

Безопасным уровнем  содержания ртути в крови считают 50-100 мкг/л, волосах — 30-40 мкг/г, моче — 5-10 мкг/сут. Человек получает с суточным рационом 0,045-0,060 мг ртути, что примерно соответствует рекомендуемой ФАО/ВОЗ по ДСП — 0,05 мг. ПДК ртути в водопроводной воде, идущей для приготовления пищи, составляет 0,005 мг/л, международный стандарт — 0,01 мг/л (ВОЗ, 1974).

Медь. Содержание в земной коре составляет 4,5 мг/кг, морской воде — 1-25 мкг/кг, организме взрослого человека — около 100 мг/кг.

Медь, в отличие от ртути  и мышьяка, принимает активное участие в процессах жизнедеятельности, входя в состав ряда ферментных систем. Суточная потребность — 4-5 мг. Дефицит меди приво-

дит к анемии, недостаточности роста, ряду других заболеваний, в отдельных случаях — к смертельному исходу.

В организме присутствуют механизмы биотрансформации меди. При длительном воздействии высоких доз меди наступает «поломка» механизмов адаптации, переходящая в интоксикацию и специфическое заболевание. В этой связи является актуальной проблема охраны окружающей среды и пищевой продукции от загрязнения медью и ее соединениями. Основная опасность исходит от промышленных выбросов, передозировки инсектицидами, другими токсичными солями меди, потребления напитков, пищевых продуктов, соприкасающихся в процессе производства с медными деталями оборудования или медной тарой.

Информация о работе Загрязнение продовольственного сырья и пищевых продуктов ксенобиотиками химического и биологического происхождения