Керамзит способы производства

Автор: Пользователь скрыл имя, 18 Декабря 2010 в 10:25, курсовая работа

Описание работы

Керамзитовый гравий — частицы округлой формы с оплавленной поверхностью и порами внутри. Керамзит получают главным образом в виде керамзитового гравия. Зерна его имеют округлую форму. Структура пористая, ячеистая. На поверхности его часто имеется более плотная корочка. Цвет керамзитового гравия обычно темно-бурый, в изломе — почти черный. Его получают вспучиванием при обжиге легкоплавких глин во вращающих печах. Такой гравий с размерами зерен 5 – 40 мм морозоустойчив, огнестоек, не впитывает воду и не содержит вредных для цемента примесей. Керамзитовый гравий используют в качестве заполнителя при изготовлении легкобетонных конструкций.

Содержание

Введение 3
1 Номенклатура выпускаемой продукции 4
2 Технологическая часть 9
2.1 Выбор способа производства 9
2.2 Режим работы цеха 11
2.3 Производительность цеха 12
2.4 Характеристика сырьевых материалов 14
2.5 Расход сырьевых материалов 16
2.6 Технологическая схема производства 18
2.7 Выбор технологической установки и описание протекающего процесса
2.8 Расчет и выбор основного технологического оборудования 20
2.9 Штатная ведомость 20
3 Технико-экономические показатели 25
4 Контроль качества 27
5 Охрана труда и окружающей среды 31
Заключение 36
Список использованной литературы

Работа содержит 1 файл

Курсовая теплоизоляция.doc

— 407.00 Кб (Скачать)

  Содержание

              Введение   3
  1          Номенклатура выпускаемой продукции   4
  2         Технологическая часть   9
  2.1       Выбор способа производства   9
  2.2      Режим работы цеха   11
  2.3      Производительность цеха   12
  2.4      Характеристика сырьевых материалов   14
  2.5        Расход сырьевых материалов   16
  2.6       Технологическая схема производства   18
  2.7       Выбор технологической установки  и описание протекающего процесса    
  2.8       Расчет и выбор основного технологического оборудования   20
  2.9       Штатная ведомость   20
  3          Технико-экономические показатели   25
  4          Контроль качества   27
  5          Охрана труда и окружающей среды   31
              Заключение   36
              Список использованной литературы   37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Введение

    Керамзит представляет собой легкий пористый материал ячеистого строения в виде гравия, реже в виде щебня, получаемый при обжиге легкоплавких глинистых пород, способных вспучиваться при быстром нагревании их до температуры 1050 – 1300 С в течение 25–45 мин. Качество керамзитового гравия характеризуется размером его зерен, объемным весом и прочностью. В зависимости от размера зерен керамзитовый гравий делят на следующие фракции: 5 – 10, 10 – 20 и 20 – 40 мм, зерна менее 5 мм относят к керамзитовому песку. В зависимости от объемного насыпного веса (в кг/м3) гравий делят на марки от 150 до 800. Водопоглощение керамзитового гравия 8–20 %, морозостойкость должна быть не менее 25 циклов. Керамзит применяют в качестве пористого заполнителя для легких бетонов, а также в качестве теплоизоляционного материала в виде засыпок.

    Керамзитовый гравий — частицы округлой формы с оплавленной поверхностью и порами внутри. Керамзит получают главным образом в виде керамзитового гравия. Зерна его имеют округлую форму. Структура пористая, ячеистая. На поверхности его часто имеется более плотная корочка. Цвет керамзитового гравия обычно темно-бурый, в изломе — почти черный. Его получают вспучиванием при обжиге легкоплавких глин во вращающих печах. Такой гравий с размерами зерен 5 – 40 мм морозоустойчив, огнестоек, не впитывает воду и не содержит вредных для цемента примесей. Керамзитовый гравий используют в качестве заполнителя при изготовлении легкобетонных конструкций.

      Керамзитовый щебень — заполнитель для легких бетонов произвольной формы, преимущественно угловатой с размерами зерен от 5 до 40 мм, получаемый путем дробления крупных кусков вспученной массы керамзита.

    Керамзитовый песок — заполнитель для легких бетонов и растворов с размером частиц от 0,14 до 5 мм получают при обжиге глинистой мелочи во вращающих и шахтных печах или же дроблением более крупных кусков керамзита.

    Некоторые глины при обжиге вспучиваются. Например, при производстве глиняного кирпича  один из видов брака— пережог — иногда сопровождается вспучиванием. Это явление использовано для получения из глин пористого материала — керамзита. Вспучивание глины при обжиге связано с двумя процессами: газовыделением и переходом глины в пиропластическое состояние.

    Источниками газовыделения являются реакции  восстановления окислов железа при их взаимодействии с органическими примесями, окисления этих примесей, дегидратации гидрослюд и других водосодержащих глинистых минералов, диссоциации карбонатов и т. д. В пиропластическое состояние глины переходят, когда при высокой температуре в них образуется жидкая фаза (расплав), в результате чего глина размягчается, приобретает способность к пластической деформации, в то же время становится газонепроницаемой и вспучивается выделяющимися газами. 

        1 Номенклатура

    В ГОСТ 9759—76 предусматриваются следующие фракции керамзитового гравия по крупности зерен: 5—10, 10— 20 и 20—40 мм. В каждой фракции допускается до 5% более мелких и до 5% более крупных зерен по сравнению с номинальными размерами. Из-за невысокой эффективности грохочения материала в барабанных грохотах трудно добиться разделения керамзита на фракции в пределах установленных допусков.

    По  насыпной плотности керамзитовый гравий подразделяется на 10 марок: от 250 до 800, причем к марке 250 относится керамзитовый гравий с насыпной плотностью до 250 кг/м3, к марке 300 — до 300 кг/м3 и т. д. Насыпную плотность определяют по фракциям в мерных сосудах. Чем крупнее фракция керамзитового гравия, тем, как правило, меньше насыпная плотность, поскольку крупные фракции содержат наиболее вспученные гранулы.

    Для каждой марки по насыпной плотности  стандарт устанавливает требования к прочности керамзитового гравия при сдавливании в цилиндре и соответствующие им марки по прочности (табл.). Маркировка по прочности позволяет сразу наметить область рационального применения того или иного керамзита в бетонах соответствующих марок. Более точные данные получают при испытании заполнителя в бетоне 

Таблица 1.1 Требования к прочности керамзитового гравия 

Марка по насыпной плотности Высшая  категория качества Первая  категория качества
Марка по прочности Предел прочности  при сдавливании в цилиндре, МПа, не менее Марка по прочности Предел прочности  при сдавливании в цилиндре, МПа, не менее
    250     П35     0,8     П25     0,6
    300     П50     1     П35     0,8
    350     П75     1,5     П50     1
    400     П75     1,8     П50     1,2
    450     П100     2,1     П75     1,5
    500     П125     2,5     П75     1,8
    550     П150     3,3     П100     2,1
    600     П150     3,5     П125     2,5
    700     П200     4,5     П150     3,3
    800     П250     5,5     П200     4,5
 

    Прочность пористого заполнителя - важный показатель его качества. Стандартизована лишь одна методика определения прочности пористых заполнителей вне бетона — сдавливанием зерен в цилиндре стальным пуансоном на заданную глубину. Фиксируемая при этом величина напряжения принимается за условную прочность заполнителя. Эта методика имеет принципиальные недостатки, главный из которых — зависимость показателя прочности от формы зерен и пустотности смеси. Это настолько искажает действительную прочность заполнителя, что лишает возможности сравнивать между собой различные пористые заполнители и даже заполнители одного вида, но разных заводов. Методика определения прочности керамзитового гравия основана на испытании одноосным сжатием на прессе отдельных гранул керамзита. Предварительно гранулу стачивают с двух сторон для получения параллельных опорных плоскостей. При этом она приобретает вид бочонка высотой 0,6—0,7 диаметра. Чем больше количество испытанных гранул, тем точнее характеристика средней прочности. Чтобы получить более или менее надежную характеристику средней прочности керамзита, достаточно десятка гранул.

    Испытание керамзитового гравия в цилиндре дает лишь условную относительную характеристику его прочности, причем сильно заниженную. Установлено, что действительная прочность керамзита, определенная при испытании в бетоне, в 4-5 раз превышает стандартную характеристику. К такому же выводу на основе опытных данных пришли В. Г. Довжик, В. А. Дорф, М. 3. Вайнштейн и другие исследователи.

    Стандартная методика предусматривает свободную  засыпку керамзитового гравия в  цилиндр и затем сдавливание его с уменьшением первоначального объема на 20%. Под действием нагрузки прежде всего происходит уплотнение гравия за счет некоторого смещения зерен и их более компактной укладки. Основываясь на опытных данных, можно полагать, что за счет более плотной укладки керамзитового гравия достигается уменьшение объема свободной засыпки в среднем на 7%. Следовательно, остальные 13% уменьшения объема приходятся на смятие зерен (рис.1).Если первоначальная высота зерна D, то после смятия она уменьшается на 13%.

                        

      
 
 
 
 
 
 

Рис. 1. Схема сдавливания зерен                Рис.2. Схема укладки зерен керамзита

керамзита при испытании

    Высококачественный  керамзит, обладающий высокой прочностью, как правило, характеризуется относительно меньшими, замкнутыми и равномерно распределенными порами. В нем достаточно стекла для связывания частичек в плотный и прочный материал, образующий стенки пор. При распиливании гранул сохраняются кромки, хорошо видна корочка.

    Водопоглощение заполнителя выражается в процентах от веса сухого материала. Этот показатель для некоторых видов пористых заполнителей нормируется (например, в ГОСТ 9759—71). Однако более наглядное представление о структурных особенностях заполнителей дает показатель объемного водопоглощения.

    Поверхностные оплавленные корочки на зернах керамзита  в начальный период (даже при меньшей  объемной массе в зерне и большей  пористости) имеют почти в два  раза ниже объемное водопоглощение, чем  зерна щебня. Поэтому необходима технология гравиеподобных заполнителей с поверхностной оплавленной корочкой из перлитового сырья, шлаковых расплавов и других попутных продуктов промышленности (золы ТЭС, отходы углеобогащения). Поверхностная корочка керамзита в первое время способна задержать проникновение воды вглубь зерна (это время соизмеримо со временем от изготовления легкобетонной смеси до ее укладки). Заполнители, лишенные корочки, поглощают воду сразу, и в дальнейшем количество ее мало изменяется..

    Между водопоглощением и прочностью зерен в ряде случаев существует тесная корреляционная связь. Чем больше водопоглощение, тем ниже прочность пористых заполнителей. В этом проявляется дефектность структуры материала. Например, для керамзитового гравия коэффициент корреляции составляет 0,46. Эта связь выявляется более отчетливо, чем связь прочности и объемной массы керамзита (коэффициент корреляции 0,29).

    Для снижения водопоглощения предпринимаются  попытки предварительной гидрофобизации пористых заполнителей. Пока они не привели к существенным положительным результатам из-за невозможности получить нерасслаивающуюся бетонную смесь при одновременном сохранении эффекта гидрофобизации.

    Особенности      деформативных свойств предопределяются пористой структурой заполнителей. Это, прежде всего, относится к модулю упругости, который существенно ниже, чем у плотных заполнителей Собственные деформации (усадка, набухание) искусственных пористых заполнителей, как правило, невелики. Они на один порядок ниже деформаций цементного камня. При исследованиях деформаций керамзита все образцы при насыщении водой дают набухание, а при высушивании — усадку, но величина деформаций разная. После первого цикла половина образцов показывает остаточное расширение, после второго — три четверти, что свидетельствует об изменении структуры керамзита. Средняя величина усадки после первого цикла 0,14 мм/м, после второго — 0,15 мм/м. Учитывая, что гравий в бетоне насыщается и высушивается в меньшей степени, реальные деформации керамзита в бетоне составляют лишь часть этих величин. Пористые заполнители оказывают сдерживающее влияние на деформации усадки (и ползучести) цементного камня в бетоне, в результате чего легкий бетон имеет меньшую деформативность, чем цементный камень.

Информация о работе Керамзит способы производства