Система автоматического управления

Автор: Пользователь скрыл имя, 13 Ноября 2011 в 13:18, курсовая работа

Описание работы

Основные задачи теории автоматического управления:
• анализ устойчивости, свойств, динамических показателей качества и точности САУ;
• синтез алгоритмов (аналитических выражений), описывающих САУ и обеспечивающих оптимальное качество управления;
• моделирование САУ с использованием компьютеров и универсальных либо специализированных (предметно-ориентированных) прикладных программ;
• проектирование САУ с использованием аппаратных средств вычислительной техники и их программного обеспечения (средств автоматизации программирования и проч.).

Содержание

Введение.
1. Структура и функциональные компоненты САУ. Основные компоненты САУ. Укрупненная схема системы управления. Управление сложными системами. Локальные задачи управления. Многоканальное управление. Регуляторы и задающие блоки. Специальные блоки систем управления.
2. Математическая модель объекта управления. Система линейных уравнений объекта. Передаточная функция системы. Типовые звенья САУ. Типовые входные воздействия.
3. Временные характеристики САУ. Понятие временных характеристик. Экспериментальное определение временных параметров. Физическая реализуемость.
4. Частотные характеристики САУ. Понятие частотных характеристик. Годограф. Логарифмические частотные характеристики.
5. Характеристики элементарных звеньев систем. Безинерционное (пропорциональное, усилительное) звено, Апериодическое инерционное звено первого порядка. Интегрирующее (астатическое) звено. Интегрирующее звено с замедлением. Идеальное дифференцирующее звено. Дифференцирующее звено с замедлением. Апериодическое звено второго порядка. Колебательное звено.
6. Построение моделей вход-выход. Простейшие соединения блоков. Передаточные функции систем управления.

Работа содержит 1 файл

ТАУ.doc

— 541.00 Кб (Скачать)

     Наблюдатели применяются также в системах управления состоянием, в которых не все переменные состояния могут быть измерены или результаты измерения содержат значительные помехи.

     Математическая  модель (уравнение) объекта управления может содержать коэффициенты qj - массо-инерционные, электрические, термодинамические и пр. параметры управляемого процесса и других используемых в САУ устройств. В тех случаях, когда значения параметров изменяются во времени или заранее неизвестны, появляется необходимость в использовании идентификаторов параметров.

     Идентификатором называется блок (алгоритм) вида q(t)= Q(у(t), u(t), …), где Q(*) - динамический оператор, предназначенный для оценивания параметров ОУ по имеющейся информации о текущем состоянии у(t) и входном воздействии u(t) объекта, т. е. для расчета в реальном времени значений q(t). Идентификаторы применяются в адаптивных системах управления, в которых параметры регулятора не устанавливаются заранее, а настраиваются в процессе работы. В таких системах часто используются адаптивные алгоритмы управления вида u(t) = U(e(t), у*(t), q(t),...), а вектор оценки q(t) может быть получен с помощью алгоритма идентификации.

3.2. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОБЪЕКТА УПРАВЛЕНИЯ [1, 8].

     Математической  моделью динамической системы принято  называть совокупность аналитических выражений и алгоритмов, однозначно определяющих развитие процессов в системе, т. е. ее движение. В зависимости от типа сигналов различаются непрерывные и дискретные модели систем. В зависимости от используемых операторов - линейные и нелинейные, временные и частотные модели. К временным относятся модели, в которых аргументом является время (непрерывное или дискретное). Это дифференциальные и разностные уравнения, записанные в явном виде или в операторной форме. Частотные модели предусматривают использование операторов, аргументом которых является частота соответствующего сигнала.

     Аналитические модели вход-выход (ВВ) - это описание связи входных и выходных сигналов динамической системы, которое применяется как для отдельных блоков, так и всей системы управления в целом. Для обозначения входных и выходных сигналов воспользуемся обозначениями, характерными для объекта управления, где входным сигналом является управляющее воздействие u(t), а выходным регулируемая переменная y(t). В этом разделе рассматриваются непрерывные временные модели, описывающие связи входных и выходных переменных динамической системы с помощью обыкновенных дифференциальных уравнений соответствующего порядка.

     Система линейных уравнений  объекта. В общем случае модель одноканального объекта управления описывается нелинейным дифференциальным уравнением (системой уравнений), связывающим входной сигнал управления u(t) и выходной сигнал состояния объекта y(t):

F(y', y", …, y(n), u', u", …, u(m)) = 0.                                      (3.2.1)

     Уравнение описывает динамическое состояние  ОУ на некотором временном интервале tto, и связывает входные сигналы u(t) и их производные u(n)(t) с выходными сигналами y(t) и их производными y(n)(t). Значения у(to) = уо, у'(to) = у'о, ... , y(n)(to) = у(n)о называются начальными значениями (условиями), а число г = n-m 1- относительной степенью модели.

     Классом дифференциальных уравнений, удобным для проведения исследований, являются линейные дифференциальные уравнения. Переход к линейным дифференциальным уравнениям выполняется операцией линеаризации, при которой переменные уравнения (3.2.1) заменяются новыми переменными – отклонениями от некоторого номинального режима (y=y-yн, u= u-uн), начало координат переносится в точку номинального режима, а функция F раскладывается в ряд Тейлора в окрестностях этой точки по частным производным. В результате линеаризации получаем следующую систему линейных уравнений в отклонениях:

A0(t)y(n) + A1(t)y(n-1) +…+ An(t)y = B0(t)u(m) + В1(t)y(m-1) +…+ Bm(t)u.         (3.2.2)        

     Порядок системы уравнений равен n по порядку производной y(n)(t), n ≥ m, так как при n < m системы технически нереализуемы. Так как все частные производные представляют собой либо постоянные матрицы, либо матрицы, зависящие только от времени, то полученное уравнение есть либо система линейных дифференциальных уравнений с постоянными коэффициентами (Aj(t) = aj = const, Bj(t) = bj = const), либо система с переменными коэффициентами, в зависимости от номинальной траектории.

     В случае постоянных коэффициентов система  называется стационарной. Как правило, входные и выходные величины объекта - скалярные функции, при этом уравнение (3.2.2) принимает вид:

a0y(n) + a1y(n-1) +…+ any = b0u(m) + b1y(m-1) +…+ bmu.               (3.2.3)        

где aj, bj – постоянные коэффициенты (параметры) модели, a0 > 0, b0 > 0, n - порядок модели, 0 m < n. Решение уравнений таких стационарных объектов относительно y(t) является главным объектом исследований в классической теории автоматического управления.

     Система, для которой u(t) 0, называется автономной. Описание автономной системы дается однородным дифференциальным уравнением вида

a0y(n) + a1y(n-1) +…+ any = 0.                                        (3.2.3')        

     Передаточная функция системы. Основной метод исследования линейных систем с постоянными коэффициентами - преобразование Лапласа. При нулевых начальных условиях, после преобразования Лапласа уравнения вида (3.2.3), получаем:

L[a0y(n) + a1y(n-1) +…+ any] = L[b0u(m) + b1y(m-1) +…+ bmu].

(a0p(n) + a1p(n-1) +…+ an)Y(p) = (b0p(m) + b1p(m-1) +…+ bm)U(p).            (3.2.4)

Y(p) = L[y(t)] =

exp(-pt) y(t) dt,

U(p) = L[u(t)] =

exp(-pt) u(t) dt.

     Для линейного уравнения преобразование Лапласа отношения выходного сигнала Y(p) к входному сигналу U(p) при нулевых начальных условиях не зависит от самих сигналов и называется передаточной функцией системы W(p).

Y(p) = U(p) (b0p(m) + b1p(m-1) +…+ bm) /(a0p(n) + a1p(n-1) +…+ an),

W(p) = (b0p(m) + b1p(m-1) +…+ bm) /(a0p(n) + a1p(n-1) +…+ an),                (3.2.5)

Y(p) = W(p) U(p).

     Передаточная  функция W(p) зависит только от самих  дифференциальных уравнений и обладает свойством линейности:

     Если Y(p) = Y1(p) + Y2(p), то U(p) = W(p)Y1(p) + W(p)Y2(p) = U1(p)+U2(p).

     Если Y(p) = сY(p), то U(p) = W(p) Y(p) = с W(p) Y(p).

     В общем случае замкнутая система регулирования с обратной связью рассматривается в структурной форме, приведенной на рис. 3.2.1, где используются следующие обозначения сигналов:

Y(p) = W(p)e(p);  W(p) = W1(p)W2(p);

Yос(p) = Wос(p)Y(p);  e(p)=U(p)-Yoc(p).

     

Рис. 3.2.1.

     Выражение выходного сигнала состояния  системы через входной сигнал управления:

Y(p)=W(p)(U(p)-Wос(p)Y(p);

Y(p)(1± W(p)Wос(p))=W(p)U(p).

     Отсюда  главная передаточная функция замкнутой системы:

Wзс(p) = Y(p)/U(p) = W(p)/[1 ± W(p) Woc(p)].

     Знак  плюс или минус определяется типом обратной связи (отрицательная или положительная). Соответственно, выходной сигнал с учетом сигнала дестабилизирующего воздействия f(t), который суммируется с правой частью выражения (3.2.3):

Y(p)=Wзс(p)U(p) + Wf(p)f(p),

где Wf(p) – передаточная функция по возмущению. В замкнутой системе передаточная функция по возмущению определяется как отношение выходной величины, преобразованной по Лапласу, к функции возмущающего воздействия, преобразованной по Лапласу при нулевых начальных условиях. Возмущающее воздействие может быть приложено к любой точке системы.

Wf(p) = Y(p)/f(p) = W2(p)/[1+Woc(p)W(p)].

     Передаточная  функция по ошибке:

We(p) = e(p)/U(p) = 1/[1 + W(p) Woc(p)].

     Передаточная функция по ошибке - основное средство исследования точности САУ. C учетом возмущающего воздействия:

e(p)=We(p)U(p) + Wef(p)f(p),

где Wef(p) - передаточная функция по ошибке и возмущению (от возмущения к ошибке):

Wef(p) = e(p)/f(p) = -W2(p)Woc(p)/[1 + W(p) Woc(p)].

     Передаточная  функция по обратной связи:

WYoc(p) = Yoc(p)/U(p) = W(p) Woc(p)/[1 + W(p) Woc(p)].

     Типовые звенья САУ. Полиномы числителя и знаменателя передаточной функции (3.2.5) можно разложить на простейшие множители по их корням:

W(p) = N(p)/P(p) = m [(p-p1ч)…(p-pmч)] / [(p-p1з)…(p-pnз)],             (3.2.6)

где μ = b0 /a0 – константа, piч – множество корней числителя N(p)=0, piз – множество корней знаменателя P(p)=0. Корни числителя передаточной функции называют нулями, корни знаменателя – полюсами. Комплексно сопряженные корни объединяются в квадратурные полиномы с вещественными коэффициентами: (p-α+jβ)(p-α-jβ) = p2-2αp+β22.

     После такого представления в числителе  и знаменателе будет некоторое  количество скобок первого и второго порядка с вещественными числовыми коэффициентами, каждую из которых можно рассматривать, как элементарную передаточную функцию, практически реализуемую в силу вещественности коэффициентов. Если вынести из всех скобок свободные члены и объединить их произведение в общий множитель К, то получим уравнение:

Информация о работе Система автоматического управления