Система автоматического управления

Автор: Пользователь скрыл имя, 13 Ноября 2011 в 13:18, курсовая работа

Описание работы

Основные задачи теории автоматического управления:
• анализ устойчивости, свойств, динамических показателей качества и точности САУ;
• синтез алгоритмов (аналитических выражений), описывающих САУ и обеспечивающих оптимальное качество управления;
• моделирование САУ с использованием компьютеров и универсальных либо специализированных (предметно-ориентированных) прикладных программ;
• проектирование САУ с использованием аппаратных средств вычислительной техники и их программного обеспечения (средств автоматизации программирования и проч.).

Содержание

Введение.
1. Структура и функциональные компоненты САУ. Основные компоненты САУ. Укрупненная схема системы управления. Управление сложными системами. Локальные задачи управления. Многоканальное управление. Регуляторы и задающие блоки. Специальные блоки систем управления.
2. Математическая модель объекта управления. Система линейных уравнений объекта. Передаточная функция системы. Типовые звенья САУ. Типовые входные воздействия.
3. Временные характеристики САУ. Понятие временных характеристик. Экспериментальное определение временных параметров. Физическая реализуемость.
4. Частотные характеристики САУ. Понятие частотных характеристик. Годограф. Логарифмические частотные характеристики.
5. Характеристики элементарных звеньев систем. Безинерционное (пропорциональное, усилительное) звено, Апериодическое инерционное звено первого порядка. Интегрирующее (астатическое) звено. Интегрирующее звено с замедлением. Идеальное дифференцирующее звено. Дифференцирующее звено с замедлением. Апериодическое звено второго порядка. Колебательное звено.
6. Построение моделей вход-выход. Простейшие соединения блоков. Передаточные функции систем управления.

Работа содержит 1 файл

ТАУ.doc

— 541.00 Кб (Скачать)

W(p) = K [W1(p)…Wz(p)],                                       (3.2.7)

где z=n+m, если все корни вещественные, z < n+m, если есть комплексные корни. Коэффициент К принято называть коэффициентом усиления системы. Заметим, что W(0) = К = bm/an, т.е. его числовое значение равно коэффициенту усиления на нулевой частоте ("постоянном токе").

      Классификация звеньев производится по виду их передаточных функций, независимо от исполнения (механические, гидравлические, электрические и пр.). Передаточные функции типовых звеньев, из которых синтезируются системы, обычно имеют числитель или знаменатель, равный единице. Ниже приводятся выражения передаточных функций основных типовых звеньев систем:

     1. К - Усилительное звено.

     2. p - Дифференцирующее звено.

     3. 1/p - Интегрирующее звено (интегратор).

     4. K/(Tp+1) - Инерционное (апериодическое) звено.

     5. K/(T2p+2dTp+1) - Колебательное звено.

     6. K(Tp+1) - Форсирующее звено.

     7. K(T2p+2dTp+1) - Форсирующее звено 2-го порядка.

     Здесь Т – определенный временной коэффициент (постоянная времени). Звенья 2, 6 и 7 не реализуются в строгом теоретическом смысле, существуют только их приближения.

     Типовые входные воздействия. Для оценки динамических свойств системы и отдельных звеньев принято исследовать их реакцию на типовые входные воздействия. Наиболее распространенными типовыми воздействиями являются ступенчатое, импульсное и гармоническое. Любой сигнал u(t), имеющий сложную форму, можно разложить на сумму типовых воздействий ui(t) и на основании принципа суперпозиции получить результирующее изменение выходной величины y(t) в виде суммы реакций системы на каждую из составляющих.

     

Рис. 3.2.1.

     Единичная ступенька. Особое значение в теории автоматического управления имеет ступенчатое воздействие 1(t) = 1 при t≥0, 1(t) = 0 при t<0 (сигнал u1(t) на рис. 3.2.1). Все остальные воздействия могут быть сведены к нему. Так, например, импульсный сигнал может быть представлен двумя ступенчатыми сигналами одинаковой величины противоположными по знаку, поданными один за другим через интервал времени Dt(сигнал u(t) на рис. 3.2.1).

     Преобразование  Лапласа для единичной ступеньки:

1(p) = exp(-pt) dt = 1/p.                     (3.2.8)

     Линейно нарастающее воздействие (t(t)=t при t≥0, t(t) = 0 при t<0) представляет собой интеграл по времени от единичной ступеньки:

t(t) =

1(t) dt,   1(t) = d t(t) /dt.

     Преобразование  Лапласа:

t(p) = t exp(-pt) dt = 1/p2.                     (3.2.9)

     Экспоненциальная  функция exp(at). Преобразование Лапласа:

L[exp(at)] = exp(at) exp(-pt) dt = 1/(p-a).                    (3.2.10)

     Выражение справедливо и при любом комплексном  α.

     Гармонические воздействия  sin ωt и соs ωt. 

     На основе формулы Эйлера exp(jωt) = cos ωt + j sin ωt соответственно имеем cos ωt = Re exp(jωt), sin wt = Im exp(jwt). Преобразования Лапласа:

L[sin ωt] = L[Im ejωt] = Im L[ejωt] = Im (1/(p-jω)) = Im((p+jω)/(p22)) =

= Im(p/(p22)+jω/(p22)) = ω/(p22).

L[cos ωt] = Re L(ejωt) = Re (1/(p-jω)) = Re((p+jω)/(p22)) = p/(p22).

     Дельта - функция δ(t) - математическая модель очень короткого конечного воздействия большой мощности (единичный импульс). Определение δ(t)-функции даётся через интеграл свёртки с любой другой интегрируемой функцией x(t):

d(t-t0) x(t) dt = x(t0).

     Отсюда, при x(t)=1:

d(t) dt = 1,    d(t) exp(-pt) dt = 1,    L[d(t)] = 1.            (3.2.11)

     Единичный импульс физически представляет собой очень узкий импульс, ширина которого стремится к нулю, а высота - к бесконечности, ограничивающий единичную площадь. Дельта - функция связана с единичной ступенчатой и линейно-нарастающей функцией выражением:

d(t) = d1(t) /dt = d2 t(t) /dt2. 

3.3. ВРЕМЕННЫЕ ХАРАКТЕРИСТИКИ САУ [7, 8].

     Понятие временных характеристик. Зависимость изменения выходной величины системы от времени при подаче на ее вход единичного воздействия (импульса Дирака) при нулевых начальных условиях называется импульсным откликом системы или импульсной переходной характеристикой h(t). Эту функцию называют также функцией веса. Так как системы управления являются физически реализуемыми системами, импульсный отклик систем является односторонней каузальной функцией (h(t)=0 при t<0).

     Как известно из теории сигналов и систем, отклик системы на единичный импульс определяется сверткой:

h(t) d(t) =

h(t) d(t-t) dt = h(t).

     Выходной  сигнал в каждый момент времени ti зависит не только от входного сигнала в этот момент времени, но и от сигналов на входе во все предыдущие моменты времени ti-t  с “весом”, равным значениям функции h(t), т.е. в данном случае от сигнала d(t) при t=0.

     Преобразование  Лапласа свертки функций отображается произведением их изображений:

h(p) = W(p) L[d(t)] = W(p) 1 = W(p).                                  (3.3.1)

     В действительности дельта-функция в чисто теоретическом плане не реализуется. Реальные импульсные воздействия на системы всегда конечны по величине и продолжительности. Но если их продолжительность достаточно мала по сравнению со временем переходного процесса в системе (длительностью переходной характеристики в пределах заданной погрешности), то входное воздействие можно считать приближением к дельта-функции и применять для оценки переходных процессов в системе.

     Не  меньшее значение в САУ уделяется  переходной характеристике H(t), реакции системы на единичное ступенчатое воздействие. Изображение Лапласа:

H(p) = W(p)/p.                                                  (3.3.2)

     Переходная  и импульсная переходная характеристики называются временными характеристиками. Каждая из них является исчерпывающей характеристикой системы и любого ее звена при нулевых начальных условиях. По ним можно однозначно определить выходную величину при произвольном входном воздействии.

     Экспериментальное определение временных  параметров системы и отдельных ее звеньев можно проводить подачей единичных импульсных сигналов или единичных ступеней на их входы с измерением реакции на выходах. Если на вход подать d(t) d(t) и зарегистрировать на выходе hd(t) h(t), то изображение Лапласа передаточной функции определится выражением:

L[hd(t)] = Wd(p) W(p).

      Соответственно, при подаче на вход ступенчатой функции 1(t) регистрируется переходная функция H(t) и вычисляется W(p):

W(p) = L[dH(t)/dt].

      Для произвольного входного воздействия u(t) при t≥0 переходной процесс на выходе звена при известных функциях H(t) или h(t) и нулевых начальных условиях:

y(t) = u(0)H(t) +

H(t) u(t-t) dt,      y(t) =
h(
t) u(t-t) dt.

     Физическая реализуемость. Передаточная функция является физически реализуемой, если возможно создание устройства или программы, которые позволяют реально получить или вычислить выход блока с такой передаточной функцией для реальных типовых входных сигналов и их комбинаций. На выходе систем не должно появляться стремящихся к бесконечности значений сигналов в конечные моменты времени при подаче на вход конечных сигналов.

     Заведомо  физически нереализуемой является передаточная функция (3.2.5) с порядком числителя большим порядка знаменателя. Строго говоря, физически нереализуемой является и функция с порядком числителя равным порядку знаменателя. В первом случае после деления числителя на знаменатель выделяется, помимо прочего, несколько идеальных дифференцирующих звеньев. Во втором случае при делении числителя на знаменатель выделяется усилительное звено. Заметим, что даже идеальный усилитель не может быть физически реализован, не говоря уже об идеальном дифференцирующем звене, так как в обоих случаях частотная характеристика системы не стремятся к нулю на больших частотах.

3.4. ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ САУ [7, 8, 9, 14].

     Понятие частотных характеристик  является важнейшим понятием, широко применяемым в теории управления. Методы, основанные на применении частотных характеристик, являются наиболее удобными в инженерной практике в классе систем с одним входом и выходом.

     Функция W(jw), равная отношению выходного сигнала к входному при изменении входного сигнала по гармоническому закону, называется частотной передаточной функцией. Она может быть получена путем замены p на jw в выражении W(p). В более общей формулировке частотную передаточную функцию можно представить в виде отношения частотных спектров выходного и входного сигнала:

W(jw) = Y(jw)/U(jw) = W(p)|p=jw.

     Частотная передаточная функция линейного  звена является изображением Фурье  его импульсной функции и может определяться по интегральному преобразованию:

W(jw) =

h(t) exp(-jwt) dt.

     Для односторонних функций h(t), W(jw) есть комплексная функция, которую иногда называют амплитудно-фазо-частотной характеристикой (АФЧХ):

W(jw) = A(w) exp(jj(w)) = P(w) + jQ(w),

где P(w) - вещественная,  Q(w) - мнимая частотные характеристики, А(w) - амплитудная частотная характеристика (АЧХ), j(w) - фазовая частотная характеристика (ФЧХ). АЧХ дает отношение амплитуд выходного и входного сигналов, ФЧХ - сдвиг по фазе выходной величины относительно входной:

Информация о работе Система автоматического управления