Газотурбинная установка контейнеровоза вместимостью 800 контейнеров, со скоростью хода Vs=25 узлов

Автор: Пользователь скрыл имя, 23 Ноября 2012 в 08:50, дипломная работа

Описание работы

Указанная проблема является комплексной и включает в себя следующие связанные между собой вопросы:
- оптимальное конструирование оборудования;
- создание новых материалов, разработка более совершенной технологии изготовления конструкций и новых методов неразрушающего контроля;
- разработка более точных методов расчета деталей и узлов;
- создание более совершенных методов и средств экспериментального исследования;
- разработка средств и методов контроля за техническим состоянием оборудования в процессе эксплуатации энергетической установки (техническая диагностика).

Содержание

1. Введение: перспективы развития энергетических установок быстроходных
судов

2. Технико-экономическое обоснование выбора типа ЭУ

3. Расчет ходкости судна

4. Расчет гребного винта и валопровода

5. Компоновка и расчет тепловой схемы СЭУ

6. Тепловой расчет тубогенератора

7. Гидравлический расчет масляной системы ГТД

8. Определение масса - габаритных показателей СЭУ

9. Тепловые выбросы ГТД и меры по их уменьшению

10. Экономическая часть

11.Заключение

12. Список использованной литературы

Работа содержит 23 файла

1. Введение.doc

— 2.27 Мб (Открыть, Скачать)

10. экономика.doc

— 115.00 Кб (Открыть, Скачать)

2. ЭО.doc

— 481.50 Кб (Открыть, Скачать)

3. ходкость.doc

— 176.50 Кб (Открыть, Скачать)

4. винт и вал.doc

— 281.00 Кб (Открыть, Скачать)

5.тс.doc

— 612.50 Кб (Открыть, Скачать)

6. расчет турбогенератора.doc

— 228.50 Кб (Открыть, Скачать)

7. гидравл. расчет.doc

— 110.00 Кб (Открыть, Скачать)

8. Определение масс.doc

— 76.50 Кб (Открыть, Скачать)

9. Теплов. выбросы ГТД.doc

— 204.50 Кб (Скачать)


При выделении больших  количеств оксида углерода (например, при выжиге кокса на регенераторных установках) его собирают и сжигают  в котлах-утилизаторах. При низких концентрациях СО в выбросе требуется  применять устройства для каталитического дожигания. Оксид углерода можно избирательно отделить от других газов посредством промывки специальными растворами, например, аммиачным раствором формиата меди.

Снижение выбросов оксида углерода на установках каталитического  крекинга достигается дожигом отходящих газов, осуществлением полного дожига непосредственно в регенераторе на базе применения промотирующих добавок к основному катализатору (благородный металл на оксиде алюминия). Концентрация СО в отходящих газах снижается при этом от 10 до 0,1%.

Дожиг является также  основным методом нейтрализации  для других источников выбросов оксида углерода и других вредных углеводородов  с применением новых, более эффективных  катализаторов дожига. Так, разработан гранулированный катализатор НТК-11 для низкотемпературной конверсии оксида углерода с водяным паром в производствах аммиака, водорода, синтеза метанола и других процессах.

Проведены испытания  установки термокаталитического дожига газов окисления битумного производства. Ранее применительно к катализатору НИИОГАЗ-10Д было показано, что при температуре в слое катализатора 500-560°С достигаются следующие пределы окисления примесей: 72-87% для С-Н и СО; 91-92,5% для H2S; 73-74% для RSH. На основе исследований разработан технологический регламент процесса с использованием термической и каталитической ступеней дожига. Термический процесс при температуре 400-450°С протекает в циклонной топке со степенью окисления: 75-90% H2S; 23-71% RSH и 56-83% СО + (СН). Каталитическое окисление проводится при температуре 500-550°С; эффективность обезвреживания оксида углерода и органических продуктов может достигать 99,8%.

Углеводороды. Можно выделить основные способы снижения уровня загрязнения атмосферы при хранении нефтей и нефтепродуктов:

  • - обеспечение поступлений на завод сырой нефти с давлением насыщенных паров и содержанием минеральных солей, отвечающих ГОСТу;
  • - обеспечение стабилизации вырабатываемых на заводах бензиновых компонентов и других легких фракций, направляемых для хранения в резервуары. Причинами неудовлетворительной работы системы стабилизации бензиновых компонентов могут быть: низкое давление в стабилизаторах и недостаточное число фракционирующих тарелок, малый диаметр аппарата, низкая температура нагрева продукта, нарушения технологического режима работы и т.п.;


  • - обеспечение охлаждения светлых продуктов, направляемых в резервуары для хранения, до минимально возможной температуры, для чего необходимо сооружать дополнительные концевые холодильники. Исследования показали, что при снижении на 10-15°С температуры охлаждения светлых продуктов перед поступлением их в резервуары для хранения потери от "дыханий" резервуаров уменьшаются в 1,5-2,5 раза;
  • - замена резервуаров с шатровой крышей на резервуары с плавающими крышами, понтонами или резервуары, работающие при избыточном давлении. В резервуаре с плавающей крышей нет газового пространства над продуктом, т.е. исключены потери от "дыханий". Резервуары подобных конструкций могут быть большой емкости, что дает значительную экономию капитальных затрат на их сооружение, а также дополнительно сокращаются потери продукта при малых "дыханиях";
  • - оборудование действующих резервуарных парков специальными системами улавливания испаряющихся из резервуаров паров нефтепродуктов: адсорбцией паров на активированных углях с циклической вакуумной регенерацией последних и поглощением десорбированных паров потоком бензина; адсорбцией паров бензином при пониженных температурах; сжиганием выделяющихся паров.

Главным узлом, имеющим  открытую связь установки вакуумной  перегонки с окружающей средой, является конденсационно-вакуумная система, через которую выбрасываются загрязнители. Поэтому от выбора схемы и устройства конденсационно-вакуумсоздающих систем будет в значительной степени зависеть не только уровень энергозатрат на создание вакуума, а также уровень безвозвратных потерь углеводородного сырья и выброс вредных веществ в окружающую среду.

Нефтепродукты, поступающие  с оборотной водой, в основном испаряются в воздух. Например, в  градирнях НПЗ удаляется с  воздухом через открытые вентиляторы 2500 т/год углеводородов. Для снижения выбросов из очистных сооружений необходимо уменьшить расход сточных вод за счет использования системы оборотного водоснабжения и аппаратов воздушного охлаждения, а также заменить нефтеловушки открытого типа закрытыми, полностью или частично герметизированными.

Резервуары для нефти  и бензинов, имеющих низкую температуру  начала кипения, оборудуют "плавающими" крышами, снижающими потери с парами нефтепродуктов на 90% по сравнению с  резервуарами обычного типа.

Значительный эффект дает модернизация старых установок  завода и выведение из эксплуатации морально и физически изношенных установок. Названные мероприятия  позволили значительно снизить  общий выброс углеводородов, например, на Московском НПЗ (рис. 3.18).


Новые технологические  установки с малыми удельными  потерями, системой утилизации факельного газа, например, установки для выпуска высокооктанового бензина и очистки дизельных топлив от серы, а также ввод в действие нового производства полипропилена позволили сократить выбросы вредных веществ в атмосферу в 10 раз.

Твердые вещества. С химическими методами переработки углеводородного сырья, особенно каталитическими, помимо вышеуказанных загрязнителей атмосферы, связан и выброс пылеобразующих веществ.

Выбор системы пылеочистки  должен базироваться на комплексном  рассмотрении всего технологического процесса. Предопределенные технологией  каталитического крекинга методы снижения расхода катализатора путем его  извлечения из контактных газов в  аппаратах технологической пылеочистки и принудительного возврата в реакционную систему устанавливают взаимно однозначное соответствие между фракционным составом катализатора в системе, скоростью его уноса из псевдосжиженного слоя, интенсивностью истирания и весовой скоростью потерь. На балансовые показатели процесса каталитического крекинга и систем пылеулавливания значительное влияние оказывают свойства катализатора. Поэтому при расчете систем пылеулавливания необходимо учитывать различия в физико-механических характеристиках рабочих и поступающих на установку катализаторов.

Уровень выбросов вредных  веществ в окружающую среду в  значительной степени зависит от параметров технологических установок. Так, например, при переработке дистиллятного  сырья каталитическим крекингом поддержание высокой средневзвешенной активности катализатора достигается повышенной кратностью его циркуляции. Но увеличение кратности циркуляции ведет к более интенсивному износу катализатора и выносу большого количества катализаторной пыли в атмосферу.

На современных установках каталитического крекинга обычно применяют  двухступенчатые системы циклонов в регенераторе и одноступенчатые - в реакторе. При этом ограничения  технологии (например, максимальное содержание легких фракций лимитируется величиной механических примесей в тяжелых продуктах крекинга) требуют вполне определенной эффективности каталитических систем и, естественно, предопределяют уровень потерь катализатора в атмосферу. Однако, если этот уровень превышает нормы предельно допустимых выбросов или допустимую концентрацию катализаторной пыли в приземном слое, то возникает необходимость установки дополнительных выносных систем очистки газов. При этом выносные (дополнительные) системы пылеулавливания могут иметь различные схемы, которые должны отвечать следующим требованиям:


  • - обеспечивать санитарные требования по уровню предельно допустимых концентраций катализаторной пыли в приземном слое;
  • - обладать высоким уровнем надежности, низким гидравлическим сопротивлением и малой металлоемкостью.

262

 

Наибольшее применение нашли выносные схемы, включающие одновременно групповые или батарейные циклоны, электрофильтр, сепараторы тонкой очистки  для подготовки газов и рекуперации  их энергии в турбинах. При этом возможны различные модификации  схем тонкой санитарной очистки, сущность которых заключается в повышении эффективности сепарации путем откачки части газа с уловленной пылью и очистки в отдельном сепараторе газов отсоса перед выбросом их в атмосферу или применение мокрого скруббера взамен мультициклона.

Повышение эффективности работы факельной системы.

Сокращение объемов  газов, сбрасываемых на факел, и возврат  их в производство - одна из актуальных задач нефтепереработки. Опыт показывает, что сброс газов при пуске  установок, в аварийных ситуациях и нарушениях технологических режимов пока неизбежен. При этом состав и объемы газов могут сильно различаться. Факельная установка всегда должна быть готова к приему и обезвреживанию аварийных и периодических сбросов, поэтому она снабжена пилотными горелками. Постоянные сбросы должны собираться на установке утилизации и возвращаться на переработку или использоваться в качестве топливного газа.

По месту расположения горелок факельные установки  разделяют на высотные (надземные) и  наземные. В зависимости от высоты факельной трубы надземные установки принято подразделять на средние (4-25 м) и высокие (> 25 м). В некоторых случаях высота факельной трубы составляет 80-120 м. Выбор высоты и расположения факела определяется топографией производственной площадки, характером близлежащих технологических установок, населенных пунктов и др. С целью снижения вредного воздействия высокие факелы располагают обычно в подветренной части производственной площади.

Основными достоинствами  факельных установок являются:

  • - удаленность от пожароопасных объектов (10-15 м);
  • - возможность обезвреживания значительных объемов сбрасываемых газов (более 400 т/ч).


Эксплуатационные показатели факельных систем должны характеризоваться  стабильностью пламени, полнотой сгорания газа, уровнем шума, надежностью воспламенения, эффективностью управления при изменении объемов или состава сгорающего газа, бездымностью работы.

Применявшиеся ранее  факельные системы утилизации газов, например на Московском НПЗ (рис. 3.19а), не отвечали современным экологическим требованиям по следующим причинам: отсутствие независимых источников подачи и потребления газа, систем с различным давлением и достаточно емкого буфера для сглаживания давления; регулировка производительности установки утилизации вручную; малая производительность установок.

Модернизация предприятия  с вводом новых установок неизбежно  приводит к изменению параметров и режимов сжигания сбрасываемых газов (паров). Поэтому были проведены  проектные проработки для определения  направления реконструкции факельной установки с целью улучшения экологической обстановки предприятия. Результаты исследований на предприятиях топливно-нефтехимического профиля показывают, что не все количество сбрасываемого газа сгорает на наземном факеле. Строительство наземного факела не дает преимуществ с экономической и с экологической точек зрения. Для обеспечения стабильной работы наземного факела требуется увеличить расход топливного газа приблизительно на 3,2 т/ч, что приведет к увеличению выброса вредных веществ. Это связано с низкой высотой наземной факельной установки и малой скоростью выхода продуктов сгорания.

Спроектирована высотная факельная установка, которая состоит  из гидрозатвора, факельного ствола, газового затвора для сокращения расхода  продувочного (топливного) газа, факельного оголовка, дежурных горелок и системы зажигания (3.196). Все эти элементы обеспечивают стабильную (без погасания) работу факельной установки в широких технологических режимах. Наличие устройств для распыления пара обеспечивает полноту сгорания углеводородов, содержащихся в сбросном газе. Специальные факельные горелки обеспечивают автономное сжигание сероводорода независимо от расхода углеводородных газов. Предусмотрены резервные стволы с оголовками как для сероводородного, так и для углеводородного сбросов. Это позволяет обеспечить бесперебойную работу факельной установки.

Факельная установка  рассчитана на достаточно полное сжигание сбросных газов в широком интервале  их расходов. В частности, для сжигания относительно небольших сбросов  газов, содержащих сероводород, предусмотрена отдельная факельная горелка, а для бездымного сжигания углеводородных газов подведен пар, количество которого обеспечит качественное сжигание до 40 т/ч углеводородов.


Сравнительные характеристики ранее  действующей и новой факельных установок приведены в табл. 3.19. Конструкция, размеры новой факельной установки и системы ее привязки позволяют

~$адание.doc

— 162 байт (Открыть, Скачать)

Задание.doc

— 51.00 Кб (Открыть, Скачать)

Заключение..doc

— 32.50 Кб (Открыть, Скачать)

Министерство образования и науки Российской Федерации.doc

— 25.50 Кб (Открыть, Скачать)

МКО.dwg

— 297.98 Кб (Скачать)

плакат МГП.dwg

— 61.66 Кб (Скачать)

плакат экология.dwg

— 55.34 Кб (Скачать)

Смазка.dwg

— 172.25 Кб (Скачать)

Содержание.doc

— 25.00 Кб (Открыть, Скачать)

Спецификация.dwg

— 50.14 Кб (Скачать)

Список использованных источников.doc

— 39.50 Кб (Открыть, Скачать)

ТС ГТУ(ТУК).dwg

— 139.53 Кб (Скачать)

Турбокомпрессор(2000).dwg

— 234.64 Кб (Скачать)

Информация о работе Газотурбинная установка контейнеровоза вместимостью 800 контейнеров, со скоростью хода Vs=25 узлов